Nearly Optimal Minimax Estimator for High Dimensional Sparse Linear Regression
نویسنده
چکیده
We present estimators for a well studied statistical estimation problem: the estimation for the linear regression model with soft sparsity constraints (`q constraint with 0 < q ≤ 1) in the high-dimensional setting. We first present a family of estimators, called the projected nearest neighbor estimator and show, by using results from Convex Geometry, that such estimator is within a logarithmic factor of the optimal for any design matrix. Then by utilizing a semi-definite programming technique developed in [41], we obtain an approximation algorithm for computing the minimax risk for any such estimation task and also a polynomial time nearly optimal estimator for the important case of `1 sparsity constraint. Such results were only known before for special cases, despite decades of studies on this problem. We also extend the method to the adaptive case when the parameter radius is unknown.
منابع مشابه
On the Minimax Optimality of Block Thresholded Wavelets Estimators for ?-Mixing Process
We propose a wavelet based regression function estimator for the estimation of the regression function for a sequence of ?-missing random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator based on block thresholding are investigated. It is found that the estimators achieve optimal minimax convergence rates over large class...
متن کاملHigh-dimensional classification by sparse logistic regression
We consider high-dimensional binary classification by sparse logistic regression. We propose a model/feature selection procedure based on penalized maximum likelihood with a complexity penalty on the model size and derive the non-asymptotic bounds for the resulting misclassification excess risk. The bounds can be reduced under the additional low-noise condition. The proposed complexity penalty ...
متن کاملSparse Regularization for High Dimensional Additive Models
We study the behavior of the l1 type of regularization for high dimensional additive models. Our results suggest remarkable similarities and differences between linear regression and additive models in high dimensional settings. In particular, our analysis indicates that, unlike in linear regression, l1 regularization does not yield optimal estimation for additive models of high dimensionality....
متن کاملMinimax Optimal Rates of Estimation in High Dimensional Additive Models: Universal Phase Transition
We establish minimax optimal rates of convergence for estimation in a high dimensional additive model assuming that it is approximately sparse. Our results reveal an interesting phase transition behavior universal to this class of high dimensional problems. In the sparse regime when the components are sufficiently smooth or the dimensionality is sufficiently large, the optimal rates are identic...
متن کاملSparse PCA: Optimal Rates and Adaptive Estimation
Principal component analysis (PCA) is one of the most commonly used statistical procedures with a wide range of applications. This paper considers both minimax and adaptive estimation of the principal subspace in the high dimensional setting. Under mild technical conditions, we first establish the optimal rates of convergence for estimating the principal subspace which are sharp with respect to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013