Transgenic Mice Overexpressing Nuclear SREBP-1c in Pancreatic -Cells
نویسندگان
چکیده
Influx of excess fatty acids and the resultant accumulation of intracellular triglycerides are linked to impaired insulin secretion and action in the pathogenesis of type 2 diabetes. Sterol regulatory element–binding protein (SREBP)-1c is a transcription factor that controls cellular synthesis of fatty acids and triglycerides. SREBP-1c is highly expressed in high-energy and insulin-resistant states. To investigate effects of this synthetic lipid regulator on insulin secretion, we generated transgenic mice overexpressing nuclear SREBP-1c under the insulin promoter. -Cell–specific expression of SREBP-1c caused reduction in islet mass and impaired glucose-stimulated insulin secretion and was associated with accumulation of triglycerides, suppression of pancreas duodenal homeobox-1, and upregulation of uncoupling protein 2 gene expression. The mice presented with impaired glucose tolerance that was exacerbated by a high-energy diet. Taken together with enhanced insulin secretion from SREBP-1–null islets, these data suggest that SREBP-1c and endogenous lipogenesis could be involved in -cell dysfunction and diabetes. Diabetes 54:492–499, 2005
منابع مشابه
Cholesterol accumulation and diabetes in pancreatic b-cell-specific SREBP-2 transgenic mice: a new model for lipotoxicity
To determine the role of cholesterol synthesis in pancreatic b-cells, a transgenic model of in vivo activation of sterol-regulatory element binding protein 2 (SREBP-2) specifically in b-cells (TgRIP-SREBP-2) was developed and analyzed. Expression of nuclear human SREBP-2 in b-cells resulted in severe diabetes as evidenced by greater than 5-fold elevations in glycohemoglobin compared with C57BL/...
متن کاملIsoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells.
We have produced transgenic mice whose livers express a dominant positive NH2-terminal fragment of sterol regulatory element binding protein-1c (SREBP-1c). Unlike full-length SREBP-1c, the NH2-terminal fragment enters the nucleus without a requirement for proteolytic release from cell membranes, and hence it is immune to downregulation by sterols. We compared SREBP-1c transgenic mice with a lin...
متن کاملOverexpression of sterol regulatory element-binding protein-1a in mouse adipose tissue produces adipocyte hypertrophy, increased fatty acid secretion, and fatty liver.
Sterol regulatory element-binding proteins (SREBPs) are a family of membrane-bound transcription factors that regulate cholesterol and fatty acid homeostasis. In mammals, three SREBP isoforms designated SREBP-1a, SREBP-1c, and SREBP-2 have been identified. SREBP-1a and SREBP-1c are derived from the same gene by virtue of alternatively spliced first exons. SREBP-1a has a longer transcriptional a...
متن کاملIncreased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus.
Hepatic steatosis is common in non-insulin-dependent diabetes and can be associated with fibrosis and cirrhosis in a subset of individuals. Increased rates of fatty acid synthesis have been reported in livers from rodent models of diabetes and may contribute to the development of steatosis. Sterol regulatory element-binding proteins (SREBPs) are a family of regulated transcription factors that ...
متن کاملCloning and characterization of a mammalian fatty acyl-CoA elongase as a lipogenic enzyme regulated by SREBPs.
The mammalian enzyme involved in the final elongation of de novo fatty acid biosynthesis following the building of fatty acids to 16 carbons by fatty acid synthase has yet to be identified. In the process of searching for genes activated by sterol regulatory element-binding protein 1 (SREBP-1) by using DNA microarray, we identified and characterized a murine cDNA clone that is highly similar to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005