Stochastic dynamic causal modelling of FMRI data with multiple-model Kalman filters.

نویسندگان

  • P Osório
  • P Rosa
  • C Silvestre
  • P Figueiredo
چکیده

INTRODUCTION This article is part of the Focus Theme of Methods of Information in Medicine on "Biosignal Interpretation: Advanced Methods for Neural Signals and Images". BACKGROUND Dynamic Causal Modelling (DCM) is a generic formalism to study effective brain connectivity based on neuroimaging data, particularly functional Magnetic Resonance Imaging (fMRI). Recently, there have been attempts at modifying this model to allow for stochastic disturbances in the states of the model. OBJECTIVES This paper proposes the Multiple-Model Kalman Filtering (MMKF) technique as a stochastic identification model discriminating among different hypothetical connectivity structures in the DCM framework; moreover, the performance compared to a similar deterministic identification model is assessed. METHODS The integration of the stochastic DCM equations is first presented, and a MMKF algorithm is then developed to perform model selection based on these equations. Monte Carlo simulations are performed in order to investigate the ability of MMKF to distinguish between different connectivity structures and to estimate hidden states under both deterministic and stochastic DCM. RESULTS The simulations show that the proposed MMKF algorithm was able to successfully select the correct connectivity model structure from a set of pre-specified plausible alternatives. Moreover, the stochastic approach by MMKF was more effective compared to its deterministic counterpart, both in the selection of the correct connectivity structure and in the estimation of the hidden states. CONCLUSIONS These results demonstrate the applicability of a MMKF approach to the study of effective brain connectivity using DCM, particularly when a stochastic formulation is desirable.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Techniques for Modelling Brain Connectivity in Neuroimaging

A fundamental question in neuroscience is how different brain areas communicate with each other. Dynamic causal modelling (DCM) is a generic formalism to study effective brain connectivity based on neuroimaging data, particularly functional magnetic resonance imaging (fMRI). The interactions between neuronal activity at different brain areas areas are modelled as a first-order differential equa...

متن کامل

Dynamic modeling of neuronal responses in fMRI using cubature Kalman filtering

This paper presents a new approach to inverting (fitting) models of coupled dynamical systems based on state-of-the-art (cubature) Kalman filtering. Crucially, this inversion furnishes posterior estimates of both the hidden states and parameters of a system, including any unknown exogenous input. Because the underlying generative model is formulated in continuous time (with a discrete observati...

متن کامل

Stochastic dynamic causal modelling of fMRI data: Should we care about neural noise?

Dynamic causal modelling (DCM) was introduced to study the effective connectivity among brain regions using neuroimaging data. Until recently, DCM relied on deterministic models of distributed neuronal responses to external perturbation (e.g., sensory stimulation or task demands). However, accounting for stochastic fluctuations in neuronal activity and their interaction with task-specific proce...

متن کامل

IMPLEMENTATION OF EXTENDED KALMAN FILTER TO REDUCE NON CYCLO-STATIONARY NOISE IN AERIAL GAMMA RAY SURVEY

Gamma-ray detection has an important role in the enhancement the nuclear safety and provides a proper environment for applications of nuclear radiation. To reduce the risk of exposure, aerial gamma survey is commonly used as an advantage of the distance between the detection system and the radiation sources. One of the most important issues in aerial gamma survey is the detection noise. Various...

متن کامل

Improving the Performance of ICA Algorithm for fMRI Simulated Data Analysis Using Temporal and Spatial Filters in the Preprocessing Phase

Introduction: The accuracy of analyzing Functional MRI (fMRI) data is usually decreases in the presence of noise and artifact sources. A common solution in for analyzing fMRI data having high noise is to use suitable preprocessing methods with the aim of data denoising. Some effects of preprocessing methods on the parametric methods such as general linear model (GLM) have previously been evalua...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Methods of information in medicine

دوره 54 3  شماره 

صفحات  -

تاریخ انتشار 2015