Poisson Geometry of Differential Invariants of Curves in Some Nonsemisimple Homogenous Spaces

نویسنده

  • G. MARÍ BEFFA
چکیده

In this paper we describe a family of compatible Poisson structures defined on the space of coframes (or differential invariants) of curves in flat homogeneous spaces of the form M ∼= (G n IRn)/G where G ⊂ GL(n, IR) is semisimple. This includes Euclidean, affine, special affine, Lorentz, and symplectic geometries. We also give conditions on geometric evolutions of curves in the manifold M so that the induced evolution on their differential invariants is Hamiltonian with respect to our main Hamiltonian bracket.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Geometric Hamiltonian Structures on Flat Semisimple Homogeneous Manifolds

In this paper we describe Poisson structures defined on the space of Serret-Frenet equations of curves in a flat homogeneous space G/H where G is semisimple. These structures are defined via Poisson reduction from Poisson brackets on Lg∗, the space of Loops in g∗. We also give conditions on invariant geometric evolution of curves in G/H which guarantee that the evolution induced on the differen...

متن کامل

Contributions to differential geometry of spacelike curves in Lorentzian plane L2

‎In this work‎, ‎first the differential equation characterizing position vector‎ ‎of spacelike curve is obtained in Lorentzian plane $mathbb{L}^{2}.$ Then the‎ ‎special curves mentioned above are studied in Lorentzian plane $mathbb{L}%‎‎^{2}.$ Finally some characterizations of these special curves are given in‎ ‎$mathbb{L}^{2}.$‎

متن کامل

Signature submanifolds for some equivalence problems

This article concerned on the study of signature submanifolds for curves under Lie group actions SE(2), SA(2) and for surfaces under SE(3). Signature submanifold is a regular submanifold which its coordinate components are differential invariants of an associated manifold under Lie group action, and therefore signature submanifold is a key for solving equivalence problems.

متن کامل

60 20 07 v 3 9 F eb 1 99 6 VIRTUAL MODULI CYCLES AND GW - INVARIANTS

The study of moduli spaces plays a fundamental role in our understanding geometry and topology of algebraic manifolds, or more generally, symplectic manifolds. One example is the Donaldson theory (and more recently the Seiberg-Witten invariants), which gives rise to differential invariants of 4-manifolds [Do]. When the underlying manifold is an algebraic surface, then it is the intersection the...

متن کامل

A Completely Integrable Flow of Star-shaped Curves on the Light Cone in Lorentzian R

In this paper we prove that the space of differential invariants for curves with arc-length parameter in the light cone of Lorentzian R4, invariants under the centro-affine action of the Lorentzian group, is Poisson equivalent to the space of conformal differential invariants for curves in the Möbius sphere. We use this relation to find realizations of solutions of a complexly coupled system of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014