Active Shielding and Control of Noise
نویسندگان
چکیده
We present a mathematical framework for the active control of time-harmonic acoustic disturbances. Unlike many existing methodologies, our approach provides for the exact volumetric cancellation of unwanted noise in a given predetermined region of space while leaving unaltered those components of the total acoustic field that are deemed friendly. Our key finding is that for eliminating the unwanted component of the acoustic field in a given area, one needs to know relatively little; in particular, neither the locations nor structure nor strength of the exterior noise sources need to be known. Likewise, there is no need to know the volumetric properties of the supporting medium across which the acoustic signals propagate, except, perhaps, in the narrow area of space near the boundary (perimeter) of the domain to be shielded. The controls are built based solely on the measurements performed on the perimeter of the region to be shielded; moreover, the controls themselves (i.e., additional sources) are also concentrated only near this perimeter. Perhaps as important, the measured quantities can refer to the total acoustic field rather than only to its unwanted component, and the methodology can automatically distinguish between the two. In the paper, we construct a general solution to the aforementioned noise control problem. The apparatus used for deriving the general solution is closely connected to the concepts of generalized potentials and boundary projections of Calderon’s type. For a given total wave field, the application of Calderon’s projections allows us to definitively split its incoming and outgoing components with respect to a particular domain of interest, which may have arbitrary shape. Then the controls are designed so that they suppress the incoming component for the domain to be shielded or alternatively, the outgoing component for the domain, which is complementary to the one to be shielded. To demonstrate that the new noise control technique is appropriate, we thoroughly work out a twodimensional model example that allows full analytical consideration. To conclude, we very briefly discuss the numerical (finite-difference) framework for active noise control that has, in fact, already been worked out, as well as some forthcoming extensions of the current work: optimization of the solution according to different criteria that would fit different practical requirements, applicability of the new technique to quasi-stationary problems, and active shielding in the case of the broad-band spectra of disturbances. In the future, the aforementioned finitedifference framework for active noise control is going to be used for analyzing complex configurations that originate from practical designs.
منابع مشابه
A High Performance Feedback Active Noise Control System
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the op...
متن کاملA High Performance Feedback Active Noise Control System
In many active noise control (ANC) applications, an online secondary path modelling method that uses a white noise as a training signal is required. This paper proposes a new feedback ANC system. Here we modified both the FxLMS and the VSS-LMS algorithms to raised noise attenuation and modelling accuracy for the overall system. The proposed algorithm stops injection of the white noise at the op...
متن کاملActive Noise Cancellation using Online Wavelet Based Control System: Numerical and Experimental Study
Reaction wheels (RWs) used for attitude control of space vehicle systems usually encounter with undesired wide band noises. These noises which significantly affect the performance of regulator controller must tune the review or review rate of RWs. According to wide frequency band of noises in RWs the common approaches of noise cancellation cannot conveniently reduce the effects of the noise. Th...
متن کاملActive Noise Control in Pardis Coach using Different Fuzzy Controllers
In recent years, need to increase the convenience of trips in railway vehicles causes that train operators and manufacturers focus on reducing the noise level which is sensed by passengers. In this paper, first the state of modeling acoustic noise in cab train is discussed and natural frequencies and acoustic mode shapes are derived and then formulation of acoustic pressure in the cab will be o...
متن کاملA Robust Feedforward Active Noise Control System with a Variable Step-Size FxLMS Algorithm: Designing a New Online Secondary Path Modelling Method
Several approaches have been introduced in literature for active noise control (ANC)systems. Since Filtered-x-Least Mean Square (FxLMS) algorithm appears to be the best choice as acontroller filter. Researchers tend to improve performance of ANC systems by enhancing andmodifying this algorithm. This paper proposes a new version of FxLMS algorithm. In many ANCapplications an online secondary pat...
متن کاملNonstationary Inverse Source Problem of Active Shielding
The problem of active shielding of some domains from the effect of the sources distributed in other domains is considered. The problem can be formulated either in a bounded domain or in an unbounded domain. The active shielding is realized via the implementation of additional sources in such a way that the total contribution of all sources leads to the desirable effect. Mathematically the probl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM Journal of Applied Mathematics
دوره 62 شماره
صفحات -
تاریخ انتشار 2001