On the Final Exponentiation for Calculating Pairings on Ordinary Elliptic Curves

نویسندگان

  • Michael Scott
  • Naomi Benger
  • Manuel Charlemagne
  • Luis J. Dominguez Perez
  • Ezekiel J. Kachisa
چکیده

When performing a Tate pairing (or a derivative thereof) on an ordinary pairing-friendly elliptic curve, the computation can be looked at as having two stages, the Miller loop and the so-called final exponentiation. As a result of good progress being made to reduce the Miller loop component of the algorithm (particularly with the discovery of “truncated loop” pairings like the R-ate pairing [18]), the final exponentiation has become a more significant component of the overall calculation. Here we exploit the structure of pairing-friendly elliptic curves to reduce to a minimum the computation required for the final exponentiation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Inverting the nal exponentiation of Tate pairings on ordinary elliptic curves using faults

The calculation of the Tate pairing on ordinary curves involves two major steps: the Miller Loop (ML) followed by the Final Exponentiation (FE). The rst step for achieving a full pairing inversion would be to invert this FE, which in itself is a mathematically di cult problem. To our best knowledge, most fault attack schemes proposed against pairing algorithms have mainly focussed on the ML. Th...

متن کامل

Inverting the Final Exponentiation of Tate Pairings on Ordinary Elliptic Curves Using Faults

The calculation of the Tate pairing on ordinary curves involves two major steps: the Miller Loop (ML) followed by the Final Exponentiation (FE). The rst step for achieving a full pairing inversion would be to invert this FE, which in itself is a mathematically di cult problem. To our best knowledge, most fault attack schemes proposed against pairing algorithms have mainly focussed on the ML. Th...

متن کامل

Optimal Ate Pairing on Elliptic Curves with Embedding Degree 9, 15 and 27

Since the advent of pairing based cryptography, much attention has been given to efficient computation of pairings on elliptic curves with even embedding degrees. The few works that exist in the case of odd embedding degrees require some improvements. This paper considers the computation of optimal ate pairings on elliptic curves of embedding degrees k = 9, 15 and 27 which have twists of order ...

متن کامل

Self-pairings on supersingular elliptic curves with embedding degree three

Self-pairings are a special subclass of pairings and have interesting applications in cryptographic schemes and protocols. In this paper, we explore the computation of the self-pairings on supersingular elliptic curves with embedding degree k = 3. We construct a novel self-pairing which has the same Miller loop as the Eta/Ate pairing. However, the proposed self-pairing has a simple final expone...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2008  شماره 

صفحات  -

تاریخ انتشار 2008