Arsenic resistance strategy in Pantoea sp. IMH: Organization, function and evolution of ars genes
نویسندگان
چکیده
Pantoea sp. IMH is the only bacterium found in genus Pantoea with a high As resistance capacity, but its molecular mechanism is unknown. Herein, the organization, function, and evolution of ars genes in IMH are studied starting with analysis of the whole genome. Two ars systems - ars1 (arsR1B1C1H1) and ars2 (arsR2B2C2H2) - with low sequence homology and two arsC-like genes, were found in the IMH genome. Both ars1 and ars2 are involved in the As resistance, where ars1 is the major contributor at 15 °C and ars2 at 30 °C. The difference in the behavior of these two ars systems is attributed to the disparate activities of their arsR promoters at different temperatures. Sequence analysis based on concatenated ArsRBC indicates that ars1 and ars2 clusters may be acquired from Franconibacter helveticus LMG23732 and Serratia marcescens (plasmid R478), respectively, by horizontal gene transfer (HGT). Nevertheless, two arsC-like genes, probably arising from the duplication of arsC, do not contribute to the As resistance. Our results indicate that Pantoea sp. IMH acquired two different As resistance genetic systems by HGT, allowing the colonization of changing ecosystems, and highlighting the flexible adaptation of microorganisms to resist As.
منابع مشابه
Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp.
Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, A...
متن کاملGenome Sequence of the Aerobic Arsenate-Reducing Bacterium Pantoea sp. Strain IMH
We here report the draft assembly for the genome of Pantoea sp. strain IMH, isolated from arsenic-contaminated soil in Inner Mongolia, China, with the ability to aerobically reduce arsenate to arsenite. The genome sequence will allow for the characterization of the molecular mechanisms of arsenate reduction.
متن کاملArsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH.
Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification path...
متن کاملDraft Genome Sequence of Bacillus sp. Strain CDB3, an Arsenic-Resistant Soil Bacterium Isolated from Cattle Dip Sites
Bacillus sp. strain CDB3, isolated from cattle dip sites in Australia, is highly resistant to arsenic. It contains 22 arsenic resistance (ars) genes, of which 17 are organized in 3 ars clusters. Here, we report the draft genome sequence of CDB3, which will assist us in understanding the overall ars mechanism.
متن کاملFunction of arsATorf7orf8 of Bacillus sp. CDB3 in arsenic resistance.
Bacillus sp. CDB3 isolated from an arsenic contaminated cattle dip site possesses an uncommon arsenic resistance (ars) operon bearing eight genes in the order of arsRYCDATorf7orf8. We investigated the functions of arsA, arsT, orf7 and orf8 in arsenic resistance using a plasmid-based gene knockout approach in the ars gene deficient Escherichia coli strain AW3110. The CDB3 arsA gene was shown to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016