Discussion: Latent variable graphical model selection via convex optimization
نویسندگان
چکیده
We want to congratulate the authors for a thought-provoking and very interesting paper. Sparse modeling of the concentration matrix has enjoyed popularity in recent years. It has been framed as a computationally convenient convex l1-constrained estimation problem in Yuan and Lin (2007) and can be applied readily to higher-dimensional problems. The authors argue— we think correctly—that the sparsity of the concentration matrix is for many applications more plausible after the effects of a few latent variables have been removed. The most attractive point about their method is surely that it is formulated as a convex optimization problem. Latent variable fitting and sparse graphical modeling of the conditional distribution of the observed variables can then be obtained through a single fitting procedure.
منابع مشابه
Rejoinder: Latent Variable Graphical Model Selection via Convex Optimization by Venkat Chandrasekaran,
متن کامل
Discussion of “Latent Variable Graphical Model Selection via Convex Optimization”
We wish to congratulate the authors for their innovative contribution, which is bound to inspire much further research. We find latent variable model selection to be a fantastic application of matrix decomposition methods, namely, the superposition of low-rank and sparse elements. Clearly, the methodology introduced in this paper is of potential interest across many disciplines. In the followin...
متن کاملDiscussion: Latent Variable Graphical Model Selection via Convex Optimization by Steffen Lauritzen
We want to congratulate the authors for a thought-provoking and very interesting paper. Sparse modeling of the concentration matrix has enjoyed popularity in recent years. It has been framed as a computationally convenient convex 1constrained estimation problem in Yuan and Lin (2007) and can be applied readily to higher-dimensional problems. The authors argue—we think correctly—that the sparsit...
متن کاملDiscussion : Latent Variable Graphical Model Selection via Convex Optimization
1. Introduction. We would like to congratulate the authors for their refreshing contribution to this high-dimensional latent variables graphical model selection problem. The problem of covariance and concentration matrices is fundamentally important in several classical statistical methodolo-gies and many applications. Recently, sparse concentration matrices estimation had received considerable...
متن کاملDiscussion: Latent variable graphical model selection via convex optimization
We wish to congratulate the authors for their innovative contribution, which is bound to inspire much further research. We find latent variable model selection to be a fantastic application of matrix decomposition methods , namely, the superposition of low-rank and sparse elements. Clearly, the methodology introduced in this paper is of potential interest across many disciplines. In the followi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012