Characterizing the Join-Irreducible Medvedev Degrees

نویسنده

  • Paul Shafer
چکیده

We characterize the join-irreducible Medvedev degrees as the degrees of complements of Turing ideals, thereby solving a problem posed by Sorbi. We use this characterization to prove that there are Medvedev degrees above the second-least degree that do not bound any join-irreducible degrees above this second-least degree. This solves a problem posed by Sorbi and Terwijn. Finally, we prove that the filter generated by the degrees of closed sets is not prime. This solves a problem posed by Bianchini and Sorbi.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-Valued Logic Programming Semantics: An Algebraic Approach

In this paper we introduce the notion of join irreducibility in the context of bilattices and present a procedural semantics for bilattice based logic programs which uses as its basis the join irreducible elements of the knowledge part of the bilattice The join irreducible elements in a bilattice represent the primitive bits of information present within the system In bilattices which have the ...

متن کامل

Lattice Embeddings into the R . E . Degrees Preserving 0 and 1 Klaus Ambos - Spies

We show that a finite distributive lattice can be embedded into the r.e. degrees preserving least and greatest element if and only if the lattice contains a join-irreducible noncappable element.

متن کامل

Some connections between powers of conjugacy classes and degrees of irreducible characters in solvable groups

‎Let $G$ be a finite group‎. ‎We say that the derived covering number of $G$ is finite if and only if there exists a positive integer $n$ such that $C^n=G'$ for all non-central conjugacy classes $C$ of $G$‎. ‎In this paper we characterize solvable groups $G$ in which the derived covering number is finite‎.‎ 

متن کامل

Lattice Embeddings into the R . E . Degrees Preserving 0 and 1

We show that a nite distributive lattice can be embedded into the r.e. degrees preserving least and greatest element i the lattice contains a join-irreducible noncappable element.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Notre Dame Journal of Formal Logic

دوره 52  شماره 

صفحات  -

تاریخ انتشار 2011