Semi-Supervised Learning with Multi-View Embedding: Theory and Application with Convolutional Neural Networks

نویسندگان

  • Rie Johnson
  • Tong Zhang
چکیده

This paper presents a theoretical analysis of multi-view embedding – feature embedding that can be learned from unlabeled data through the task of predicting one view from another. We prove its usefulness in supervised learning under certain conditions. The result explains the effectiveness of some existing methods such as word embedding. Based on this theory, we propose a new semi-supervised learning framework that learns a multi-view embedding of small text regions with convolutional neural networks. The method derived from this framework outperforms state-of-the-art methods on sentiment classification and topic categorization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-supervised Convolutional Neural Networks for Text Categorization via Region Embedding

This paper presents a new semi-supervised framework with convolutional neural networks (CNNs) for text categorization. Unlike the previous approaches that rely on word embeddings, our method learns embeddings of small text regions from unlabeled data for integration into a supervised CNN. The proposed scheme for embedding learning is based on the idea of two-view semi-supervised learning, which...

متن کامل

Semi-Supervised Learning for Optical Flow with Generative Adversarial Networks

Convolutional neural networks (CNNs) have recently been applied to the optical flow estimation problem. As training the CNNs requires sufficiently large amounts of labeled data, existing approaches resort to synthetic, unrealistic datasets. On the other hand, unsupervised methods are capable of leveraging real-world videos for training where the ground truth flow fields are not available. These...

متن کامل

Semi-Supervised Classification with Graph Convolutional Networks

We present a scalable approach for semi-supervised learning on graph-structured data that is based on an efficient variant of convolutional neural networks which operate directly on graphs. We motivate the choice of our convolutional architecture via a localized first-order approximation of spectral graph convolutions. Our model scales linearly in the number of graph edges and learns hidden lay...

متن کامل

Supervised and Semi-Supervised Text Categorization using LSTM for Region Embeddings

One-hot CNN (convolutional neural network) has been shown to be effective for text categorization (Johnson & Zhang, 2015a;b). We view it as a special case of a general framework which jointly trains a linear model with a non-linear feature generator consisting of ‘text region embedding + pooling’. Under this framework, we explore a more sophisticated region embedding method using Long Short-Ter...

متن کامل

Regularization With Stochastic Transformations and Perturbations for Deep Semi-Supervised Learning

Effective convolutional neural networks are trained on large sets of labeled data. However, creating large labeled datasets is a very costly and time-consuming task. Semi-supervised learning uses unlabeled data to train a model with higher accuracy when there is a limited set of labeled data available. In this paper, we consider the problem of semi-supervised learning with convolutional neural ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1504.01255  شماره 

صفحات  -

تاریخ انتشار 2015