Finite State Automata and Simple Recurrent Networks

نویسندگان

  • Axel Cleeremans
  • David Servan-Schreiber
  • James L. McClelland
چکیده

We explore a network architecture introduced by Elman (1988) for predicting successive elements of a sequence. The network uses the pattern of activation over a set of hidden units from time-step t-1, together with element t, to predict element t + 1. When the network is trained with strings from a particular finite-state grammar, it can learn to be a perfect finite-state recognizer for the grammar. When the network has a minimal number of hidden units, patterns on the hidden units come to correspond to the nodes of the grammar, although this correspondence is not necessary for the network to act as a perfect finite-state recognizer. We explore the conditions under which the network can carry information about distant sequential contingencies across intervening elements. Such information is maintained with relative ease if it is relevant at each intermediate step; it tends to be lost when intervening elements do not depend on it. At first glance this may suggest that such networks are not relevant to natural language, in which dependencies may span indefinite distances. However, embeddings in natural language are not completely independent of earlier information. The final simulation shows that long distance sequential contingencies can be encoded by the network even if only subtle statistical properties of embedded strings depend on the early information.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Induction of Finite-State Automata Using Second-Order Recurrent Networks

Second-order recurrent networks that recognize simple finite state languages over {0,1}* are induced from positive and negative examples. Using the complete gradient of the recurrent network and sufficient training examples to constrain the definition of the language to be induced, solutions are obtained that correctly recognize strings of arbitrary length. A method for extracting a finite stat...

متن کامل

Reduction of Computational Complexity in Finite State Automata Explosion of Networked System Diagnosis (RESEARCH NOTE)

This research puts forward rough finite state automata which have been represented by two variants of BDD called ROBDD and ZBDD. The proposed structures have been used in networked system diagnosis and can overcome cominatorial explosion. In implementation the CUDD - Colorado University Decision Diagrams package is used. A mathematical proof for claimed complexity are provided which shows ZBDD ...

متن کامل

Finite State Automata that Recurrent Cascade-Correlation Cannot Represent

This paper relates the computational power of Fahlman' s Recurrent Cascade Correlation (RCC) architecture to that of fInite state automata (FSA). While some recurrent networks are FSA equivalent, RCC is not. The paper presents a theoretical analysis of the RCC architecture in the form of a proof describing a large class of FSA which cannot be realized by RCC.

متن کامل

Equivalence in Knowledge Representation: Automata, Recurrent Neural Networks, and Dynamical Fuzzy Systems

Neurofuzzy systems—the combination of artificial neural networks with fuzzy logic—have become useful in many application domains. However, conventional neurofuzzy models usually need enhanced representational power for applications that require context and state (e.g., speech, time series prediction, control). Some of these applications can be readily modeled as finite state automata. Previousl...

متن کامل

Recent Advances of Grammatical Inference

In this paper, we provide a survey of recent advances in the field “Grammatical Inference” with a particular emphasis on the results concerning the learnability of target classes represented by deterministic finite automata, context-free grammars, hidden Markov models, stochastic contextfree grammars, simple recurrent neural networks, and case-based representations.

متن کامل

Recurrent Neural Networks and Finite Automata

This article studies finite size networks that consist of interconnections of synchronously evolving processors. Each processor updates its state by applying an activation function lo a linear combination of the previous states of all units. We prove that any function for which the left and right limits exist and are different can be applied to the neurons to yield a network which is at least a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural Computation

دوره 1  شماره 

صفحات  -

تاریخ انتشار 1989