RESEARCH ARTICLE Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis
نویسندگان
چکیده
Knocking out a gene from a genome often causes no phenotypic effect. This phenomenon has been explained in part by the existence of duplicate genes. However, it was found that in mouse knockout data duplicate genes are as essential as singleton genes. Here, we study whether it is also true for the knockout data in Arabidopsis. From the knockout data in Arabidopsis thaliana obtained in our study and in the literature, we find that duplicate genes show a significantly lower proportion of knockout effects than singleton genes. Because the persistence of duplicate genes in evolution tends to be dependent on their phenotypic effect, we compared the ages of duplicate genes whose knockout mutants showed less severe phenotypic effects with those with more severe effects. Interestingly, the latter group of genes tends to be more anciently duplicated than the former group of genes. Moreover, using multiple-gene knockout data, we find that functional compensation by duplicate genes for a more severe phenotypic effect tends to be preserved by natural selection for a longer time than that for a less severe effect. Taken together, we conclude that duplicate genes contribute to genetic robustness mainly by preserving compensation for severe phenotypic effects in A. thaliana.
منابع مشابه
Evolutionary Persistence of Functional Compensation by Duplicate Genes in Arabidopsis
Knocking out a gene from a genome often causes no phenotypic effect. This phenomenon has been explained in part by the existence of duplicate genes. However, it was found that in mouse knockout data duplicate genes are as essential as singleton genes. Here, we study whether it is also true for the knockout data in Arabidopsis. From the knockout data in Arabidopsis thaliana obtained in our study...
متن کاملFunctional Compensation of Primary and Secondary Metabolites by Duplicate Genes in Arabidopsis thaliana
It is well known that knocking out a gene in an organism often causes no phenotypic effect. One possible explanation is the existence of duplicate genes; that is, the effect of knocking out a gene is compensated by a duplicate copy. Another explanation is the existence of alternative pathways. In terms of metabolic products, the relative roles of the two mechanisms have been extensively studied...
متن کاملMolecular population genetics of redundant floral-regulatory genes in Arabidopsis thaliana.
Functional redundancy between duplicated genes is predicted to be transitory, as one gene either loses its function or gains a new function, or both genes accrue degenerative, yet complimentary mutations. Yet there are many examples where functional redundancy has been maintained between gene duplicates. To determine whether selection is acting on functionally redundant gene duplicates, we perf...
متن کاملTranscriptional reprogramming and backup between duplicate genes: is it a genomewide phenomenon?
Deleting a duplicate gene often results in a less severe phenotype than deleting a singleton gene, a phenomenon commonly attributed to functional compensation among duplicates. However, duplicate genes rapidly diverge in expression patterns after duplication, making functional compensation less probable for ancient duplicates. Case studies suggested that a gene may provide compensation by alter...
متن کاملDivergent Evolutionary and Expression Patterns between Lineage Specific New Duplicate Genes and Their Parental Paralogs in Arabidopsis thaliana
Gene duplication is an important mechanism for the origination of functional novelties in organisms. We performed a comparative genome analysis to systematically estimate recent lineage specific gene duplication events in Arabidopsis thaliana and further investigate whether and how these new duplicate genes (NDGs) play a functional role in the evolution and adaption of A. thaliana. We accomplis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010