A Rad53 Kinase-Dependent Surveillance Mechanism that Regulates Histone Protein Levels in S. cerevisiae
نویسندگان
چکیده
Rad53 and Mec1 are protein kinases required for DNA replication and recovery from DNA damage in Saccharomyces cerevisiae. Here, we show that rad53, but not mec1 mutants, are extremely sensitive to histone overexpression, as Rad53 is required for degradation of excess histones. Consequently, excess histones accumulate in rad53 mutants, resulting in slow growth, DNA damage sensitivity, and chromosome loss phenotypes that are significantly suppressed by a reduction in histone gene dosage. Rad53 monitors excess histones by associating with them in a dynamic complex that is modulated by its kinase activity. Our results argue that Rad53 contributes to genome stability independently of Mec1 by preventing the damaging effects of excess histones both during normal cell cycle progression and in response to DNA damage.
منابع مشابه
Novel role for checkpoint Rad53 protein kinase in the initiation of chromosomal DNA replication in Saccharomyces cerevisiae.
A novel role for Rad53 in the initiation of DNA replication that is independent of checkpoint or deoxynucleotide regulation is proposed. Rad53 kinase is part of a signal transduction pathway involved in the DNA damage and replication checkpoints, while Cdc7-Dbf4 kinase (DDK) is important for the initiation of DNA replication. In addition to the known cdc7-rad53 synthetic lethality, rad53 mutati...
متن کاملRegulation of histone deposition proteins Asf1/Hir1 by multiple DNA damage checkpoint kinases in Saccharomyces cerevisiae.
CAF-1, Hir proteins, and Asf1 are histone H3/H4 binding proteins important for chromatin-mediated transcriptional silencing. We explored genetic and physical interactions between these proteins and S-phase/DNA damage checkpoint kinases in the budding yeast Saccharomyces cerevisiae. Although cells lacking checkpoint kinase Mec1 do not display defects in telomeric gene silencing, silencing was dr...
متن کاملHistone H3 Threonine 11 Phosphorylation Is Catalyzed Directly by the Meiosis-Specific Kinase Mek1 and Provides a Molecular Readout of Mek1 Activity in Vivo.
Saccharomyces cerevisiae Mek1 is a CHK2/Rad53-family kinase that regulates meiotic recombination and progression upon its activation in response to DNA double-strand breaks (DSBs). The full catalog of direct Mek1 phosphorylation targets remains unknown. Here, we show that phosphorylation of histone H3 on threonine 11 (H3 T11ph) is induced by meiotic DSBs in S. cerevisiae and Schizosaccharomyces...
متن کاملPrevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response
In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs) are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revea...
متن کاملRAD53 regulates DBF4 independently of checkpoint function in Saccharomyces cerevisiae.
The Cdc7p and Dbf4p proteins form an active kinase complex in Saccharomyces cerevisiae that is essential for the initiation of DNA replication. A genetic screen for mutations that are lethal in combination with cdc7-1 led to the isolation of seven lsd (lethal with seven defect) complementation groups. The lsd7 complementation group contained two temperature-sensitive dbf4 alleles. The lsd1 comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cell
دوره 115 شماره
صفحات -
تاریخ انتشار 2003