The Large Sieve for 2 modulo Primes

نویسنده

  • M. Z. Garaev
چکیده

Let λ be a fixed integer, λ ≥ 2. Let s n be any strictly increasing sequence of positive integers satisfying s n ≤ n 15/14+o(1). In this paper we give a version of the large sieve inequality for the sequence λ sn. In particular, we prove that for π(X)(1 + o(1)) primes p, p ≤ X, the numbers λ sn , n ≤ X(log X) 2+ε are uniformly distributed modulo p.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On variants of the larger sieve

The large sieve has its origins in the work of Linnik and Rényi. It was developed to deal with sequences that avoid a positive proportion of residue classes. It was later simplified by Roth, Bombieri, Davenport, Halberstam, Montgomery, Gallagher and many others. For a survey see Montgomery [12] and Bombieri [1]. It is known that Montgomery’s large sieve [12] is a useful method when sifting sequ...

متن کامل

15/14+o(1))] modulo primes

Let λ be a fixed integer, λ ≥ 2. Let s n be any strictly increasing sequence of positive integers satisfying s n ≤ n 15/14+o(1). In this paper we give a version of the large sieve inequality for the sequence λ sn. In particular, we prove that for π(X)(1 + o(1)) primes p, p ≤ X, the numbers λ sn , n ≤ X(log X) 2+ε are uniformly distributed modulo p.

متن کامل

On the Exponential Large Sieve Inequality for Sparse Sequences modulo Primes

FOR SPARSE SEQUENCES MODULO PRIMES MEI-CHU CHANG, BRYCE KERR, AND IGOR E. SHPARLINSKI Abstract. We complement the argument of M. Z. Garaev (2009) with several other ideas to obtain a stronger version of the large sieve inequality with sparse exponential sequences of the form λn . In particular, we obtain a result which is non-trivial for monotonically increasing sequences S “ tsnun“1 provided s...

متن کامل

A Generalization of the Barban-davenport-halberstam Theorem to Number Fields (appeared in Journal of Number Theory )

For a fixed number field K, we consider the mean square error in estimating the number of primes with norm congruent to a modulo q by the Chebotarëv Density Theorem when averaging over all q ≤ Q and all appropriate a. Using a large sieve inequality, we obtain an upper bound similar to the Barban-Davenport-Halberstam Theorem.

متن کامل

Designing and Detecting Trapdoors for Discrete Log Cryptosystems

Using a number field sieve, discrete logarithms modulo primes of special forms can be found faster than standard primes. This has raised concerns about trapdoors in discrete log cryptosystems, such as the Digital Signature Standard. This paper discusses the practical impact of these trapdoors, and how to avoid them.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005