Temporal processing across multiple topographic maps in the electrosensory system.
نویسندگان
چکیده
Multiple topographic representations of sensory space are common in the nervous system and presumably allow organisms to separately process particular features of incoming sensory stimuli that vary widely in their attributes. We compared the response properties of sensory neurons within three maps of the body surface that are arranged strictly in parallel to two classes of stimuli that mimic prey and conspecifics, respectively. We used information-theoretic approaches and measures of phase locking to quantify neuronal responses. Our results show that frequency tuning in one of the three maps does not depend on stimulus class. This map acts as a low-pass filter under both conditions. A previously described stimulus-class-dependent switch in frequency tuning is shown to occur in the other two maps. Only a fraction of the information encoded by all neurons could be recovered through a linear decoder. Particularly striking were low-pass neurons the information of which in the high-frequency range could not be decoded linearly. We then explored whether intrinsic cellular mechanisms could partially account for the differences in frequency tuning across maps. Injection of a Ca2+ chelator had no effect in the map with low-pass characteristics. However, injection of the same Ca2+ chelator in the other two maps switched the tuning of neurons from band-pass/high-pass to low-pass. These results show that Ca2+-dependent processes play an important part in determining the functional roles of different sensory maps and thus shed light on the evolution of this important feature of the vertebrate brain.
منابع مشابه
Multiple electrosensory maps in the medulla of weakly electric gymnotiform fish. I. Physiological differences.
The electrosensory lateral line lobe in the weakly electric gymnotiform fish Eigenmannia contains 3 topographic maps of high-frequency (tuberous) electroreceptive information from the body surface. The maps receive identical primary afferent input since axonal collaterals of both amplitude- and phase-coding afferents project to all 3 maps (Heiligenberg and Dye, 1982). Response properties of the...
متن کاملMotion processing across multiple topographic maps in the electrosensory system
Abstract Animals can efficiently process sensory stimuli whose attributes vary over orders of magnitude by devoting specific neural pathways to process specific features in parallel. Weakly electric fish offer an attractive model system as electrosensory pyramidal neurons responding to amplitude modulations of their self-generated electric field are organized into three parallel maps of the bod...
متن کاملOscillatory and burst discharge in the apteronotid electrosensory lateral line lobe
Oscillatory and burst discharge is recognized as a key element of signal processing from the level of receptor to cortical output cells in most sensory systems. The relevance of this activity for electrosensory processing has become increasingly apparent for cells in the electrosensory lateral line lobe (ELL) of gymnotiform weakly electric fish. Burst discharge by ELL pyramidal cells can be rec...
متن کاملIntrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.
The tuning of neuronal responsiveness to specific stimulus frequencies is an important computation across many sensory modalities. The weakly electric fish Apteronotus leptorhynchus detects amplitude modulations of a self-generated quasi-sinusoidal electric organ discharge to sense its environment. These fish have to parse a complicated electrosensory environment with a wide range of possible f...
متن کاملMultiple electrosensory maps in the medulla of weakly electric gymnotiform fish. II. Anatomical differences.
Both wave- and pulse-type species of weakly electric gymnotiform fish have 3 topographic maps of electroreceptive information in the electrosensory lateral line lobe (ELL). These maps receive identical input from trifurcating axons of phase- and amplitude-coding primary afferents (Carr et al., 1982; Heiligenberg and Dye, 1982). Physiological experiments in the ELL of the wave-type fish Eigenman...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 100 2 شماره
صفحات -
تاریخ انتشار 2008