Comparing extraocular motoneuron discharges during head-restrained saccades and head-unrestrained gaze shifts.
نویسندگان
چکیده
Burst neurons (BNs) in the paramedian pontine reticular formation provide the primary input to the extraocular motoneurons (MNs) during head-restrained saccades and combined eye-head gaze shifts. Prior studies have shown that BNs carry eye movement-related signals during saccades and carry head as well as eye movement-related signals during gaze shifts. Therefore MNs receive signals related to head motion during gaze shifts, yet they solely drive eye motion. Here we addressed whether the relationship between MN firing rates and eye movements is influenced by the additional premotor signals present during gaze shifts. Neurons in the abducens nucleus of monkeys were first studied during saccades made with the head stationary. We then recorded from the same neurons during voluntary combined eye-head gaze shifts. We conclude that the activity of MNs, in contrast to that of BNs, is related to eye motion by the same dynamic relationship during head-restrained saccades and head-unrestrained gaze shifts. In addition, we show that a standard metric-based analysis [i.e., counting the number of spikes (NOS) in a burst] yields misleading results when applied to the same data set. We argue that this latter approach fails because it does not properly consider the system's dynamics or the strong interactions between eye and head motion.
منابع مشابه
Do extraocular motoneurons encode head velocity during head-restrained versus head-unrestrained saccadic and smooth pursuit movements?
Microstimulation experiments in the superior colliculus1 and single-unit recordings from its target, the premotor saccadic burst neurons2 (SBNs, located in the paramedian pontine reticular formation), have shown that the saccadic burst generator encodes head as well as eye movements during head-unrestrained gaze shifts. There is also evidence suggesting that premotor circuits likely encode eye ...
متن کاملSound-localization performance in the cat: the effect of restraining the head.
In oculomotor research, there are two common methods by which the apparent location of visual and/or auditory targets are measured, saccadic eye movements with the head restrained and gaze shifts (combined saccades and head movements) with the head unrestrained. Because cats have a small oculomotor range (approximately +/-25 degrees), head movements are necessary when orienting to targets at th...
متن کامل3-Dimensional eye-head coordination in gaze shifts evoked during stimulation of the lateral intraparietal cortex.
Coordinated eye-head gaze shifts have been evoked during electrical stimulation of the frontal cortex (supplementary eye field (SEF) and frontal eye field (FEF)) and superior colliculus (SC), but less is known about the role of lateral intraparietal cortex (LIP) in head-unrestrained gaze shifts. To explore this, two monkeys (M1 and M2) were implanted with recording chambers and 3-D eye+ head se...
متن کاملHead-unrestrained gaze adaptation in the rhesus macaque.
The ability to adjust the amplitude of gaze shifts in response to persistent visual errors ("gaze adaptation") has been investigated primarily by introducing visual errors at the end of saccades produced by head-restrained primates. Very little is known about the behavior and neural mechanisms underlying gaze adaptation when the head is free to move. We tested alternative hypotheses about the s...
متن کاملActivity of long-lead burst neurons in pontine reticular formation during head-unrestrained gaze shifts.
Primates explore a visual scene through a succession of saccades. Much of what is known about the neural circuitry that generates these movements has come from neurophysiological studies using subjects with their heads restrained. Horizontal saccades and the horizontal components of oblique saccades are associated with high-frequency bursts of spikes in medium-lead burst neurons (MLBs) and long...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 83 1 شماره
صفحات -
تاریخ انتشار 2000