The osteogenic transcription factor runx2 controls genes involved in sterol/steroid metabolism, including CYP11A1 in osteoblasts.
نویسندگان
چکیده
Steroid hormones including (1,25)-dihydroxyvitamin D3, estrogens, and glucocorticoids control bone development and homeostasis. We show here that the osteogenic transcription factor Runx2 controls genes involved in sterol/steroid metabolism, including Cyp11a1, Cyp39a1, Cyp51, Lss, and Dhcr7 in murine osteoprogenitor cells. Cyp11a1 (P450scc) encodes an approximately 55-kDa mitochondrial enzyme that catalyzes side-chain cleavage of cholesterol and is rate limiting for steroid hormone biosynthesis. Runx2 is coexpressed with Cyp11a1 in osteoblasts as well as nonosseous cell types (e.g. testis and breast cancer cells), suggesting a broad biological role for Runx2 in sterol/steroid metabolism. Notably, osteoblasts and breast cancer cells express an approximately 32-kDa truncated isoform of Cyp11a1 that is nonmitochondrial and localized in both the cytoplasm and the nucleus. Chromatin immunoprecipitation analyses and gel shift assays show that Runx2 binds to the Cyp11a1 gene promoter in osteoblasts, indicating that Cyp11a1 is a direct target of Runx2. Specific Cyp11a1 knockdown with short hairpin RNA increases cell proliferation, indicating that Cyp11a1 normally suppresses osteoblast proliferation. We conclude that Runx2 regulates enzymes involved in sterol/steroid-related metabolic pathways and that activation of Cyp11a1 by Runx2 may contribute to attenuation of osteoblast growth.
منابع مشابه
Regulation of Bone Metabolism
Bone is formed through the processes of endochondral and intramembranous ossification. In endochondral ossification primary mesenchymal cells differentiate to chondrocytes and then are progressively substituted by bone, while in intramembranous ossification mesenchymal stem cells (MSCs) differentiate directly into osteoblasts to form bone. The steps of osteogenic proliferation, differentiation,...
متن کاملRunx2 controls many genes involved in migration in osteosarcoma cells
Background: The osteogenic Runt-related (RUNX) transcription factor Runx2 is frequently elevated in osseous and non-osseous tumor cells. Result: Genomic RUNX2 target genes were identified, and RUNX2 depletion reduces cell motility and adhesion in osteosarcoma cells. Conclusion: RUNX2 regulates cell motility and adhesion in osteosarcoma cells. Significance: RUNX2 may also control migration of no...
متن کاملHOXA10 controls osteoblastogenesis by directly activating bone regulatory and phenotypic genes.
HOXA10 is necessary for embryonic patterning of skeletal elements, but its function in bone formation beyond this early developmental stage is unknown. Here we show that HOXA10 contributes to osteogenic lineage determination through activation of Runx2 and directly regulates osteoblastic phenotypic genes. In response to bone morphogenic protein BMP2, Hoxa10 is rapidly induced and functions to a...
متن کاملمقایسه بیان کمّی فاکتور نسخهبرداری RUNX2 در تمایز سلولهای بنیادی مزانشیمی با محیط تمایزی استئوبلاستی و داروی زولدرونیک اسید
Background and Objectives : RUNX2 is the most specific transcription factor in osteoblastic differentiation of MSCs. In this research, RUNX2 expression was quantified in MSCs differentiated by osteogenic differentiation medium (ODM) and zoledronic acid (ZA). Materials and Methods: In this experimental study, hMSCs were treated by osteogenic differentiation medium and ZA. RNA extraction was ...
متن کاملA program of microRNAs controls osteogenic lineage progression by targeting transcription factor Runx2.
Lineage progression in osteoblasts and chondrocytes is stringently controlled by the cell-fate-determining transcription factor Runx2. In this study, we directly addressed whether microRNAs (miRNAs) can control the osteogenic activity of Runx2 and affect osteoblast maturation. A panel of 11 Runx2-targeting miRNAs (miR-23a, miR-30c, miR-34c, miR-133a, miR-135a, miR-137, miR-204, miR-205, miR-217...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular endocrinology
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2009