Endothelial-derived hyperpolarization contributes to acetylcholine-mediated vasodilation in human skin in a dose-dependent manner.
نویسندگان
چکیده
Cutaneous acetylcholine (ACh)-mediated dilation is commonly used to assess microvascular function, but the mechanisms of dilation are poorly understood. Depending on dose and method of administration, nitric oxide (NO) and prostanoids are involved to varying extents and the roles of endothelial-derived hyperpolarizing factors (EDHFs) are unclear. In the present study, five incremental doses of ACh (0.01-100 mM) were delivered either as a 1-min bolus (protocol 1, n = 12) or as a ≥20-min continuous infusion (protocol 2, n = 10) via microdialysis fibers infused with 1) lactated Ringer, 2) tetraethylammonium (TEA) [a calcium-activated potassium channel (KCa) and EDHF inhibitor], 3) L-NNA+ketorolac [NO synthase (NOS) and cyclooxygenase (COX) inhibitors], and 4) TEA+L-NNA+Ketorolac. The hyperemic response was characterized as peak and area under the curve (AUC) cutaneous vascular conductance (CVC) for bolus infusions or plateau CVC for continuous infusions, and reported as %maximal CVC. In protocol 1, TEA, alone and combined with NOS+COX inhibition, attenuated peak CVC (100 mM Ringer 59 ± 6% vs. TEA 43 ± 5%, P < 0.05; L-NNA+ketorolac 35 ± 4% vs. TEA+L-NNA+ketorolac 25 ± 4%, P < 0.05) and AUC (Ringer 25,414 ± 3,528 vs. TEA 21,403 ± 3,416%·s, P < 0.05; L-NNA+ketorolac 25,628 ± 3,828%(.)s vs. TEA+L-NNA+ketorolac 20,772 ± 3,711%·s, P < 0.05), although these effects were only significant at the highest dose of ACh. At lower doses, TEA lengthened the total time of the hyperemic response (10 mM Ringer 609 ± 78 s vs. TEA 860 ± 67 s, P < 0.05). In protocol 2, TEA alone did not affect plateau CVC, but attenuated plateau in combination with NOS+COX inhibition (100 mM 50.4 ± 6.6% vs. 30.9 ± 6.3%, P < 0.05). Therefore, EDHFs contribute to cutaneous ACh-mediated dilation, but their relative contribution is altered by the dose and infusion procedure.
منابع مشابه
Aspirin improves endothelial dysfunction in atherosclerosis.
BACKGROUND The beneficial effects of aspirin in atherosclerosis are generally attributed to its antiplatelet activities, but its influence on endothelial function remains uncertain. We hypothesized that a cyclooxygenase-dependent constricting factor contributes to the endothelial dysfunction in atherosclerosis and that its action can be reversed by aspirin. METHODS AND RESULTS In 14 patients ...
متن کاملEndothelium-derived hyperpolarizing factor : identification and mechanisms of action in human subcutaneous resistance arteries.
BACKGROUND Both a vascular endothelial cytochrome P450 (CYP450) product of arachidonic acid metabolism and the potassium ion (K(+)) have been identified as endothelium-derived hyperpolarizing factors (EDHFs) in animal vascular tissues. We studied the relative importance of EDHF, nitric oxide (NO), and prostacyclin (PGI(2)) as vasodilators in human subcutaneous arteries. We also examined the mec...
متن کاملCharacterization of acetylcholine-induced membrane hyperpolarization in endothelial cells.
The characteristics of the hyperpolarization response to acetylcholine (ACh) in endothelial cells from the guinea pig coronary artery were studied by microelectrode recording technique. ACh (30 nM to 3 microM) induced membrane hyperpolarization in a dose-dependent manner. The sustenance of the response required the presence of external calcium. The hyperpolarization was not affected by nifedipi...
متن کاملLipid-soluble smoke particles damage endothelial cells and reduce endothelium-dependent dilatation in rat and man
BACKGROUND Cigarette smoking is a strong risk factor for vascular disease and known to cause dysfunction of the endothelium. However, the molecular mechanisms involved are still not fully understood. METHODS In order to reveal the direct effects of lipid-soluble smoke particles on the endothelium, ring segments isolated from rat mesenteric arteries and human middle cerebral arteries (MCA) obt...
متن کاملObesity up-regulates intermediate conductance calcium-activated potassium channels and myoendothelial gap junctions to maintain endothelial vasodilator function.
The mechanisms involved in altered endothelial function in obesity-related cardiovascular disease are poorly understood. This study investigates the effect of chronic obesity on endothelium-dependent vasodilation and the relative contribution of nitric oxide (NO), calcium-activated potassium channels (K(Ca)), and myoendothelial gap junctions (MEGJs) in the rat saphenous artery. Obesity was indu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 119 9 شماره
صفحات -
تاریخ انتشار 2015