General Translational Repression by Activators of mRNA Decapping

نویسندگان

  • Jeff Coller
  • Roy Parker
چکیده

Translation and mRNA degradation are affected by a key transition where eukaryotic mRNAs exit translation and assemble an mRNP state that accumulates into processing bodies (P bodies), cytoplasmic sites of mRNA degradation containing non-translating mRNAs, and mRNA degradation machinery. We identify the decapping activators Dhh1p and Pat1p as functioning as translational repressors and facilitators of P body formation. Strains lacking both Dhh1p and Pat1p show strong defects in mRNA decapping and P body formation and are blocked in translational repression. Contrastingly, overexpression of Dhh1p or Pat1p causes translational repression, P body formation, and arrests cell growth. Dhh1p, and its human homolog, RCK/p54, repress translation in vitro, and Dhh1p function is bypassed in vivo by inhibition of translational initiation. These results identify a broadly acting mechanism of translational repression that targets mRNAs for decapping and functions in translational control. We propose this mechanism is competitively balanced with translation, and shifting this balance is an important basis of translational control.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HPat a Decapping Activator Interacting with the miRNA Effector Complex

Animal miRNAs commonly mediate mRNA degradation and/or translational repression by binding to their target mRNAs. Key factors for miRNA-mediated mRNA degradation are the components of the miRNA effector complex (AGO1 and GW182) and the general mRNA degradation machinery (deadenylation and decapping enzymes). The CCR4-NOT1 complex required for the deadenylation of target mRNAs is directly recrui...

متن کامل

CUP promotes deadenylation and inhibits decapping of mRNA targets.

CUP is an eIF4E-binding protein (4E-BP) that represses the expression of specific maternal mRNAs prior to their posterior localization. Here, we show that CUP employs multiple mechanisms to repress the expression of target mRNAs. In addition to inducing translational repression, CUP maintains mRNA targets in a repressed state by promoting their deadenylation and protects deadenylated mRNAs from...

متن کامل

Arabidopsis Decapping 5 Is Required for mRNA Decapping, P-Body Formation, and Translational Repression during Postembryonic Development W

Eukaryotic processing bodies (P-bodies) are implicated in mRNA storage and mRNA decapping. We previously found that a decapping complex comprising Decapping 1 (DCP1), DCP2, and Varicose in Arabidopsis thaliana is essential for postembryonic development, but the underlying mechanism is poorly understood. Here, we characterized Arabidopsis DCP5, a homolog of human RNA-associated protein 55, as an...

متن کامل

Degradation of YRA1 Pre-mRNA in the Cytoplasm Requires Translational Repression, Multiple Modular Intronic Elements, Edc3p, and Mex67p

Intron-containing pre-mRNAs are normally retained and processed in the nucleus but are sometimes exported to the cytoplasm and degraded by the nonsense-mediated mRNA decay (NMD) pathway as a consequence of their inclusion of intronic in-frame termination codons. When shunted to the cytoplasm by autoregulated nuclear export, the intron-containing yeast YRA1 pre-mRNA evades NMD and is targeted by...

متن کامل

Arabidopsis decapping 5 is required for mRNA decapping, P-body formation, and translational repression during postembryonic development.

Eukaryotic processing bodies (P-bodies) are implicated in mRNA storage and mRNA decapping. We previously found that a decapping complex comprising Decapping 1 (DCP1), DCP2, and Varicose in Arabidopsis thaliana is essential for postembryonic development, but the underlying mechanism is poorly understood. Here, we characterized Arabidopsis DCP5, a homolog of human RNA-associated protein 55, as an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 122  شماره 

صفحات  -

تاریخ انتشار 2005