Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor

نویسندگان

  • Md Mhahabubur Rhaman
  • Douglas R. Powell
  • Md. Alamgir Hossain
چکیده

Understanding the intermolecular interactions between nucleotides and artificial receptors is crucial to understanding the role of nucleic acids in living systems. However, direct structural evidence showing precise interactions and bonding features of a nucleoside monophosphate (NMP) with a macrocycle-based synthetic molecule has not been provided so far. Herein, we present two novel crystal structures of uridine monophosphate (UMP) and thymidine monophosphate (TMP) complexes with a macrocycle-based dinuclear receptor. Structural characterization of these complexes reveals that the receptor recognizes UMP through coordinate-covalent interactions with phosphates and π-π stackings with nucleobases and TMP through coordinate-covalent interactions with phosphate groups. Furthermore, the receptor has been shown to effectively bind nucleoside monophosphates in the order of GMP > AMP > UMP > TMP > CMP in water at physiological pH, as investigated by an indicator displacement assay.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Erythrocyte arginase, pyrimidine 5'-nucleotidase (P5N), and deoxypyrimidine 5'-nucleotidase (dP5N) as indices of lead exposure.

The activities of three erythrocyte (rbc) enzymes, arginase, pyrimidine 5'-nucleotidase (P5N), and deoxypyrimidine 5'-nucleotidase (dP5N), were compared in 16 lead workers and 14 age matched controls as correlates of blood lead (PbB) and unextracted zinc protoporphyrin (EP) concentrations. Subjects with PbB of 0.9-2.5 microM (19-52 micrograms/dl) had 6.5 +/- 0.6 IU of P5N activity with uridine ...

متن کامل

Some regulatory properties of pea leaf carbamoyl phosphate synthetase.

Carbamoyl phosphate synthetase of pea shoots (Pisum sativum L.) was purified 101-fold. Its stability was greatly increased by the addition of substrates and activators. The enzyme was strongly inhibited by micromolar amounts of UMP (Ki less than 2 mum). UDP, UTP, TMP, and ADP were also inhibitory. AMP caused either slight activation (under certain conditions) or was inhibitory. Uridine nucleoti...

متن کامل

Pyrimidine nucleotidase deficiency with active dephosphorylation of dTMP: evidence for existence of thymidine nucleotidase in human erythrocytes.

Erythrocytes from a patient with classical pyrimidine nucleotidase (PyN) deficiency had less than 10% residual PyN activity with uridine 5'-monophosphate (UMP) or cytidine 5'-monophosphate (CMP) as substrate, but exhibited brisk nucleotidase activity with thymidine 5'-monophosphate (dTMP). This strongly suggests the existence of separate enzymes or isozymes of PyN in normal human erythrocytes--...

متن کامل

Inhibition of 5'-nucleotidase from Ehrlich ascites-tumour cells by nucleoside triphosphates.

1. 5'-Nucleotidase activity was obtained in a soluble form after treatment of a particulate fraction from Ehrlich ascites-tumour cells with deoxycholate. The relative rates of hydrolysis of 6-thioinosine 5'-phosphate, UMP, AMP, CMP, GMP, IMP, xanthosine monophosphate, thymidine monophosphate and 2',3'-AMP were 180, 129, 100, 93, 83, 79, 46, 41 and 3 respectively. 2. Values found for the Michael...

متن کامل

Characteristics of a pyrimidine-specific 5'-nucleotidase in human erythrocytes.

A 5'-nucleotidase with unique specificity has been identified in the soluble fraction of normal human erythrocytes. It mediates the hydrolytic dephosphorylation of pyrimidine 5'-ribosemonophosphates but is catalytically ineffective with purine nucleotides or with the 2'-, 3'-, or cyclic isomers of pyrimidine nucleotides. Activities at 37 degrees in dialyzed hemolysates of nromal human erythrocy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2017