A comparison of two Bayesian approaches for uncertainty quantification

نویسندگان

  • Thierry Alex Mara
  • Frederick Delay
  • François Lehmann
  • Anis Younes
چکیده

Statistical calibration of model parameters conditioned on observations is performed in a Bayesian framework by evaluating the joint posterior probability density function (pdf) of the parameters. The posterior pdf is very often inferred by sampling the parameters with Markov Chain Monte Carlo (MCMC) algorithms. Recently, an alternative technique to calculate the socalled Maximal Conditional Posterior Distribution (MCPD) appeared. This technique infers the individual probability distribution of a given parameter under the condition that the other parameters of the model are optimal. Whereas the MCMC approach samples probable draws of the parameters, the MCPD samples the most probable draws when one of the parameters is set at various prescribed values. In this study, the results of a user-friendly MCMC sampler called DREAM(ZS) and those of the MCPD sampler are compared. The differences between the two approaches are highlighted before running a comparison inferring two analytical distributions with collinearity and multimodality. Then, the performances of both samplers are compared on an artificial multistep outflow experiment from which the soil hydraulic ∗Corresponding author: [email protected] Preprint submitted to Environmental Modelling & Sofware April 8, 2016 parameters are inferred. The results show that parameter and predictive uncertainties can be accurately assessed with both the MCMC and MCPD approaches.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of Estimates Using Record Statistics from Lomax Model: Bayesian and Non Bayesian Approaches

This paper address the problem of Bayesian estimation of the parameters, reliability and hazard function in the context of record statistics values from the two-parameter Lomax distribution. The ML and the Bayes estimates based on records are derived for the two unknown parameters and the survival time parameters, reliability and hazard functions. The Bayes estimates are obtained based on conju...

متن کامل

 The Quantification of Uncertainties in Production Prediction Using Integrated Statistical and Neural Network Approaches: An Iranian Gas Field Case Study

Uncertainty in production prediction has been subject to numerous investigations. Geological and reservoir engineering data comprise a huge number of data entries to the simulation models. Thus, uncertainty of these data can largely affect the reliability of the simulation model. Due to these reasons, it is worthy to present the desired quantity with a probability distribution instead of a sing...

متن کامل

belief function and the transferable belief model

Beliefs are the result of uncertainty. Sometimes uncertainty is because of a random process and sometimes the result of lack of information. In the past, the only solution in situations of uncertainty has been the probability theory. But the past few decades, various theories of other variables and systems are put forward for the systems with no adequate and accurate information. One of these a...

متن کامل

Comparison of Statistical and Deterministic Frameworks of Uncertainty Quantification | SIAM/ASA Journal on Uncertainty Quantification | Vol. 4, No. 1 | Society for Industrial and Applied Mathematics

Two different approaches to the prediction problem are compared employing a realistic example— combustion of natural gas—with 102 uncertain parameters and 76 quantities of interests. One approach, termed bound-to-bound data collaboration (abbreviated to B2B), deploys semidefinite programming algorithms where the initial bounds on unknowns are combined with initial bounds of experimental data to...

متن کامل

Bayesian Deep Convolutional Encoder-Decoder Networks for Surrogate Modeling and Uncertainty Quantification

We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder-decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data intensive and cannot provide predictive uncertainty, we propose ...

متن کامل

Comparison of two QTL mapping approaches based on Bayesian inference using high-dense SNPs markers

To compare different QTL mapping methods, a population with genotypic and phenotypic data was simulated. In Bayesian approach, all information of markers can be used along with combination of distributions of SNP markers. It is assumed that most of the markers (95%) have minor effects and a few numbers of markers (5%) exert major effects. The simulated population included a basic population of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Environmental Modelling and Software

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2016