MA identification using fourth order cumulants
نویسنده
چکیده
The algorithm proposed aims to identify moving average coefficient matrices of an MA process, not necessarily minimum-phase, driven by an unobserved non-gaussian input. It is assumed that the observation available is of limited duration, and coefficients are estimated from the set of fourth order output cumulants. It is shown that much more equations than unknowns are available, and that robustness for short data records can be obtained by utilizing them all. Zusammenfassung. Der vorgeschlagene Algorithmus dient dazu, die Koeffizientenmatrizen eines mehrdimensionalen nicht notwendig minimalphasigen MA-Prozesses, der von einem unbeobachteten Nicht-GauBschen Eingangssignal gespeist wird, zu identifizieren. Es wird angenommen, dab die Beobachtung zeitbegrenzt ist und die Koeffizienten aus einem Satz yon Kumulanten vierter Ordnung des Ausgangssignals geschfitzt werden. Es wird gezeigt, dab sich mehr Gleichungen als Unbekannte ergeben und dab das Verfahren bei einer geringen Eingangsdatenmenge robust wird, wenn man alle Gleichungen verwendet. R~sum~. L'algorithme propose a pour but d'identifier les matrices-coefficient d'un processus MA multivariable, pas n6cessairement ~i minimum de phase, et pilot6 par une entr6e non gaussienne non observable. On suppose que l'observation est de dur6e limit+e, et que les coefficients sont estim6s fi partir d'un ensemble de cumulants d'ordre quatre des sorties. On montre alors qu'il existe plus d'6quations que d'inconnues, et que la robustesse de l'identification s'am61iore si on les utilise toutes.
منابع مشابه
Blind Identification of MA Models using Cumulants
In this paper, many techniques for blind identification of moving average (MA) process are presented. These methods utilize thirdand fourth-order cumulants of the noisy observations of the system output. The system is driven by an independent and identically distributed (i.i.d) non-Gaussian sequence that is not observed. Two nonlinear optimization algorithms, namely the Gradient Descent and the...
متن کاملParameter estimation of moving average processes using cumulants and nonlinear optimization algorithms
In this paper nonlinear optimization algorithms, namely the Gradient descent and the Gauss-Newton algorithms, are proposed for blind identification of MA models. A relationship between third and fourth order cumulants of the noisy system output and the MA parameters is exploited to build a set of nonlinear equations that is solved by means of the two nonlinear optimization algorithms above cite...
متن کاملExtension of Linear Channels Identification Algorithms to Non Linear Using Selected Order Cumulants
In this paper, we present an extension of linear communication channels identification algorithms to non linear channels using higher order cumulants (HOC). In the one hand, we develop a theoretical analysis of non linear quadratic systems using second and third order cumulants. In the other hand, the relationship linking cumulants and the coefficients of non linear channels presented in the li...
متن کاملExperiment Performance of DOA Estimators Based on Fourth-order Cumulants
Direction-of-arrival estimation is one of the most important issues in the signal processing field, and fourthorder cumulants are used for DOA estimation by the motivation of the attractive fact that the higher-order cumulants of all kinds of Gaussian processes are identically zero. Because of the complexity of the computation for fourth-order cumulant, downsizing the cumulant matrix has attrac...
متن کاملBlind Estimation of Non-gaussian Finite Impulse Response (fir) Systems Using Higher Order Statistics
In this paper we present an approach for blind identification of a Single−Input Single−Output (SISO) Moving Average (MA) models, when only output data are available. The input sequence is assumed to be independent and identically distributed (i.i.d), zero mean and must be non−gaussian. The approach used is based on the fourth order cumulants. To evaluate the performance of the proposed algorith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Signal Processing
دوره 26 شماره
صفحات -
تاریخ انتشار 1992