Smooth strongly convex interpolation and exact worst-case performance of first-order methods

نویسندگان

  • Adrien B. Taylor
  • Julien M. Hendrickx
  • François Glineur
چکیده

We show that the exact worst-case performance of fixed-step first-order methods for unconstrained optimization of smooth (possibly strongly) convex functions can be obtained by solving convex programs. Finding the worst-case performance of a black-box first-order method is formulated as an optimization problem over a set of smooth (strongly) convex functions and initial conditions. We develop closed-form necessary and sufficient conditions for smooth (strongly) convex interpolation, which provide a finite representation for those functions. This allows us to reformulate the worst-case performance estimation problem as an equivalent finite dimension-independent semidefinite optimization problem, whose exact solution can be recovered up to numerical precision. Optimal solutions to this performance estimation problem provide both worst-case performance bounds and explicit functions matching them, as our smooth (strongly) convex interpolation procedure is constructive. Our works build on those of Drori and Teboulle in [Math. Prog. 145 (1-2), 2014] who introduced and solved relaxations of the performance estimation problem for smooth convex functions. We apply our approach to different fixed-step first-order methods with several performance criteria, including objective function accuracy and gradient norm. We conjecture several numerically supported worst-case bounds on the performance of the fixed-step gradient, fast gradient and optimized gradient methods, both in the smooth convex and the smooth strongly convex cases, and deduce tight estimates of the optimal step size for the gradient method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Convex interpolation and performance estimation of first-order methods for convex optimization

The goal of this thesis is to show how to derive in a completely automated way exact and global worst-case guarantees for first-order methods in convex optimization. To this end, we formulate a generic optimization problem looking for the worst-case scenarios. The worst-case computation problems, referred to as performance estimation problems (PEPs), are intrinsically infinite-dimensional optim...

متن کامل

On the worst-case complexity of the gradient method with exact line search for smooth strongly convex functions

We consider the gradient (or steepest) descent method with exact line search applied to a strongly convex function with Lipschitz continuous gradient. We establish the exact worst-case rate of convergence of this scheme, and show that this worst-case behavior is exhibited by a certain convex quadratic function. We also extend the result to a noisy variant of gradient descent method, where exact...

متن کامل

A Robust Accelerated Optimization Algorithm for Strongly Convex Functions

This work proposes an accelerated first-order algorithm we call the Robust Momentum Method for optimizing smooth strongly convex functions. The algorithm has a single scalar parameter that can be tuned to trade off robustness to gradient noise versus worst-case convergence rate. At one extreme, the algorithm is faster than Nesterov’s Fast Gradient Method by a constant factor but more fragile to...

متن کامل

Exact Worst-Case Performance of First-Order Methods for Composite Convex Optimization

We provide a framework for computing the exact worst-case performance of any algorithm belonging to a broad class of oracle-based first-order methods for composite convex optimization, including those performing explicit, projected, proximal, conditional and inexact (sub)gradient steps. We simultaneously obtain tight worst-case convergence guarantees and explicit problems on which the algorithm...

متن کامل

First-order methods with inexact oracle: the strongly convex case

The goal of this paper is to study the effect of inexact first-order information on the first-order methods designed for smooth strongly convex optimization problems. It can be seen as a generalization to the strongly convex case of our previous paper [1]. We introduce the notion of (!,L,μ)-oracle, that can be seen as an extension of the (!,L)-oracle (previously introduced in [1]), taking into ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Math. Program.

دوره 161  شماره 

صفحات  -

تاریخ انتشار 2017