Sample Path Properties of Bifractional Brownian Motion

نویسندگان

  • Ciprian Tudor
  • Yimin Xiao
  • Ciprian A. Tudor
چکیده

Let B = { B(t), t ∈ R+ } be a bifractional Brownian motion in R. We prove that B is strongly locally nondeterministic. Applying this property and a stochastic integral representation of B , we establish Chung’s law of the iterated logarithm for B , as well as sharp Hölder conditions and tail probability estimates for the local times of B . We also consider the existence and the regularity of the local times of multiparameter bifractional Brownian motion B = { B(t), t ∈ R+ } in R using Wiener-Itô chaos expansion. Running head: Sample Path Properties of Bifractional Brownian Motion 2000 AMS Classification Numbers: Primary 60G15, 60G17.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the bifractional Brownian motion

This paper is devoted to analyze several properties of the bifractional Brownian motion introduced by Houdré and Villa. This process is a self-similar Gaussian process depending on two parameters H and K and it constitutes a natural generalization of the fractional Brownian motion (which is obtained for K = 1). We adopt the strategy of the stochastic calculus via regularization. Particular inte...

متن کامل

A decomposition of the bifractional Brownian motion and some applications

In this paper we show a decomposition of the bifractional Brownian motion with parameters H,K into the sum of a fractional Brownian motion with Hurst parameter HK plus a stochastic process with absolutely continuous trajectories. Some applications of this decomposition are discussed.

متن کامل

Multidimensional bifractional Brownian motion: Ito and Tanaka formulas

Using the Malliavin calculus with respect to Gaussian processes and the multiple stochastic integrals we derive Itô’s and Tanaka’s formulas for the d-dimensional bifractional Brownian motion. 2000 AMS Classification Numbers: 60G12, 60G15, 60H05, 60H07.

متن کامل

An Extension of Bifractional Brownian Motion

In this paper we introduce and study a self-similar Gaussian process that is the bifractional Brownian motion BH,K with parameters H ∈ (0, 1) and K ∈ (1, 2) such that HK ∈ (0, 1). A remarkable difference between the case K ∈ (0, 1) and our situation is that this process is a semimartingale when 2HK = 1.

متن کامل

On a class of additive functionals of two-dimensional Brownian motion and random walk

Sample path properties of a class of additive functionals of two-dimensional Brownian motion and random walk are studied. AMS 1991 Subject Classification: Primary 60J15; Secondary 60F15, 60J55.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006