Vascular NAD(P)H oxidase activation in diabetes: a double-edged sword in redox signalling.
نویسندگان
چکیده
Oxidative stress mediated by hyperglycaemia-induced generation of reactive oxygen species (ROS) contributes significantly to the development and progression of diabetes and related vascular complications. NAD(P)H oxidase has been implicated as the major source of ROS generation in the vasculature in response to high glucose and advanced glycation end-products. Sustained activation of NAD(P)H oxidase in diabetes may diminish intracellular levels of NADPH, an essential cofactor for endothelial NO synthase (eNOS) and several antioxidant systems. Recent evidence suggests that basal ROS production via NAD(P)H oxidase may upregulate antioxidant enzyme defenses via redox signalling. Thus, NAD(P)H oxidase may serve as a double-edged sword, with transient activation providing a feedback defense against excessive ROS generation through the activation of receptor tyrosine kinases and the redox-sensitive Nrf2-Keap1 signalling pathway. Overproduction of ROS leads to eNOS uncoupling, mitochondrial dysfunction, and impaired antioxidant defenses owing to depletion of intracellular NADPH. Given the largely negative outcome of antioxidant therapy in the treatment of diabetic complications, targeting the redox-sensitive transcription factor Nfr2 may provide an effective strategy to restore antioxidant defenses in diabetes.
منابع مشابه
Destructive effect of quinone-containing compounds on cytochrome P450: Arbutin as a double-edged sword
متن کامل
High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD(P)H oxidase in cultured vascular cells.
Recent studies have revealed that vascular cells can produce reactive oxygen species (ROS) through NAD(P)H oxidase, which may be involved in vascular injury. However, the pathological role of vascular NAD(P)H oxidase in diabetes or in the insulin-resistant state remains unknown. In this study, we examined the effect of high glucose level and free fatty acid (FFA) (palmitate) on ROS production i...
متن کاملThe Role of Oxidative Stress in the Pathogenesis of Diabetic Vascular Complications
Oxidative stress has been paid increasing attention to as an important causative factor for diabetic vascular complications. Among possible various sources, accumulating evidence has indicated that NAD(P)H oxidase may be the most important source for reactive oxygen species production in diabetic vascular tissues. The mechanisms underlying activation and up-regulation of NAD(P)H oxidase has bee...
متن کاملMechanisms of superoxide production in human blood vessels: relationship to endothelial dysfunction, clinical and genetic risk factors.
Common vascular disease states including diabetes, hypertension and atherosclerosis are associated with endothelial dysfunction, characterised by reduced bioactivity of nitric oxide (NO). Loss of the vasculoprotective effects of NO contributes to disease progression, but the mechanisms underlying endothelial dysfunction remain unclear. Increased superoxide production in animal models of vascula...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cardiovascular research
دوره 82 1 شماره
صفحات -
تاریخ انتشار 2009