Learning Dilation Factors for Semantic Segmentation of Street Scenes
نویسندگان
چکیده
Contextual information is crucial for semantic segmentation. However, finding the optimal trade-off between keeping desired fine details and at the same time providing sufficiently large receptive fields is non trivial. This is even more so, when objects or classes present in an image significantly vary in size. Dilated convolutions have proven valuable for semantic segmentation, because they allow to increase the size of the receptive field without sacrificing image resolution. However, in current state-of-the-art methods, dilation parameters are hand-tuned and fixed. In this paper, we present an approach for learning dilation parameters adaptively per channel, consistently improving semantic segmentation results on street-scene datasets like Cityscapes and Camvid.
منابع مشابه
Supervised Label Transfer for Semantic Segmentation of Street Scenes
In this paper, we propose a robust supervised label transfer method for the semantic segmentation of street scenes. Given an input image of street scene, we first find multiple image sets from the training database consisting of images with annotation, each of which can cover all semantic categories in the input image. Then, we establish dense correspondence between the input image and each fou...
متن کاملCross-View Image Synthesis using Conditional GANs
Learning to generate natural scenes has always been a challenging task in computer vision. It is even more painstaking when the generation is conditioned on images with drastically different views. This is mainly because understanding, corresponding, and transforming appearance and semantic information across views is not trivial. In this paper, we attempt to solve the novel problem of cross-vi...
متن کاملSemantic Parsing of Street Scenes from Video Semantic Parsing of Street Scenes from Video
Semantic models of the environment can significantly improve navigation and decision making capabilities of autonomous robots or enhance level of human and robot interaction. We present a novel approach for semantic segmentation of street scene images into coherent regions, while simultaneously categorizing each region as one of the predefined categories representing commonly encountered object...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملBayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding
We present a deep learning framework for probabilistic pixel-wise semantic segmentation, which we term Bayesian SegNet. Semantic segmentation is an important tool for visual scene understanding and a meaningful measure of uncertainty is essential for decision making. Our contribution is a practical system which is able to predict pixelwise class labels with a measure of model uncertainty. We ac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017