An Approach to the Analysis of the South Slavic Medieval Labels Using Image Texture
نویسندگان
چکیده
The paper presents a new script classification method for the discrimination of the South Slavic medieval labels. It consists in the textural analysis of the script types. In the first step, each letter is coded by the equivalent script type, which is defined by its typographical features. Obtained coded text is subjected to the run-length statistical analysis and to the adjacent local binary pattern analysis in order to extract the features. The result shows a diversity between the extracted features of the scripts, which makes the feature classification more effective. It is the basis for the classification process of the script identification by using an extension of a state-of-the-art approach for document clustering. The proposed method is evaluated on an example of hand-engraved in stone and handprinted in paper labels in old Cyrillic, angular and round Glagolitic. Experiments demonstrate very positive results, which prove the effectiveness of the proposed method.
منابع مشابه
Semiautomatic Image Retrieval Using the High Level Semantic Labels
Content-based image retrieval and text-based image retrieval are two fundamental approaches in the field of image retrieval. The challenges related to each of these approaches, guide the researchers to use combining approaches and semi-automatic retrieval using the user interaction in the retrieval cycle. Hence, in this paper, an image retrieval system is introduced that provided two kind of qu...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملAnalysis of the South Slavic Scripts by Run-Length Features of the Image Texture
The paper proposes an algorithm for the script recognition based on the texture characteristics. The image texture is achieved by coding each letter with the equivalent script type (number code) according to its position in the text line. Each code is transformed into equivalent gray level pixel creating an 1-D image. Then, the image texture is subjected to the run-length analysis. This analysi...
متن کاملNew Pseudo-CT Generation Approach from Magnetic Resonance Imaging using a Local Texture Descriptor
Background: One of the challenges of PET/MRI combined systems is to derive an attenuation map to correct the PET image. For that, the pseudo-CT image could be used to correct the attenuation. Until now, most existing scientific researches construct this pseudo-CT image using the registration techniques. However, these techniques suffer from the local minima of the non-rigid deformation energy f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1509.01978 شماره
صفحات -
تاریخ انتشار 2015