The Multinomial Multiperiod Probit Model: Identification and Efficient Estimation
نویسندگان
چکیده
In this paper we discuss parameter identification and likelihood evaluation for multinomial multiperiod Probit models. It is shown in particular that the standard autoregressive specification used in the literature can be interpreted as a latent common factor model. However, this specification is not invariant with respect to the selection of the baseline category. Hence, we propose an alternative specification which is invariant with respect to such a selection and identifies coefficients characterizing the stationary covariance matrix which are not identified in the standard approach. For likelihood evaluation requiring high-dimensional truncated integration we propose to use a generic procedure known as Efficient Importance Sampling (EIS). A special case of our proposed EIS algorithm is the standard GHK probability simulator. To illustrate the relative performance of both procedures we perform a set Monte-Carlo experiments. Our results indicate substantial numerical efficiency gains of the ML estimates based on GHK-EIS relative to ML estimates obtained by using GHK. JEL classification: C35, C15
منابع مشابه
An exact likelihood analysis of the multinomial probit model
We develop new methods for conducting a finite sample, likelihood-based analysis of the multinomial probit model. Using a variant of the Gibbs sampler, an algorithm is developed to draw from the exact posterior of the multinomial probit model with correlated errors. This approach avoids direct evaluation of the likelihood and, thus, avoids the problems associated with calculating choice probabi...
متن کاملEstimability in the Multinomial Probit Model
Random utility models often involve terms which represent alternative-specific errors, and the main attractive feature of the multinomial probit (MNP) model is that it allows a rather general covariance structure for these errors. However, since observed choices only reveal information regarding utility differences, and since scale cannot be determined, not all parameters in an arbitr~iry MNP s...
متن کاملSimulated Classical Tests in the Multiperiod Multinomial Probit Model
This paper compares different versions of the simulated counterparts of the Wald test, the score test, and the likelihood ratio test in the multiperiod multinomial probit model. Monte Carlo experiments show that the simple form of the simulated likelihood ratio test delivers the most favorable test results in the five-period three-alternative probit model considered here. This result applies to...
متن کاملSimulated z-Tests in Multinomial Probit Models
Within the framework of Monte Carlo experiments, this paper systematically compares different versions of the simulated z-test (using the GHK simulator) in oneand multiperiod multinomial probit models. One important finding is that, in the flexible probit models, the tests on parameters of explanatory variables mostly provide robust results in contrast to the tests on variance-covariance parame...
متن کاملMNP: R Package for Fitting the Multinomial Probit Model
MNP is a publicly available R package that fits the Bayesian multinomial probit model via Markov chain Monte Carlo. The multinomial probit model is often used to analyze the discrete choices made by individuals recorded in survey data. Examples where the multinomial probit model may be useful include the analysis of product choice by consumers in market research and the analysis of candidate or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007