Kinetics of nutrient uptake by roots: responses to global change

نویسنده

  • HORMOZ BASSIRIRAD
چکیده

There is a growing recognition that accurate predictions of plant and ecosystem responses to global change require a better understanding of the mechanisms that control acquisition of growth-limiting resources. One such key mechanism is root physiological capacity to acquire nutrients. Changes in kinetics of root nitrogen (N) uptake might influence the extent to which terrestrial ecosystems will be able to sequester excesses in carbon (C) and N loads. Despite its significant role in determining plant and ecosystem cycling of C and N, there is little information on whether, or how, root nutrient uptake responds to global change. In this review various components of global change, namely increased CO # concentration, increased soil temperature and increased atmospheric N deposition and their effects on kinetics of root nutrient uptake are examined. The response of root nutrient uptake kinetics to high CO # is highly variable. Most of this variability might be attributable to differences in experimental protocols, but more recent evidence suggests that kinetic responses to high CO # are also species-specific. This raises the possibility that elevated CO # might alter community composition by shifting the competitive interaction of co-occurring species. Uptake of NH % + and NO $ − seem to be differentially sensitive to high CO # , which could influence ecosystem trajectory toward N saturation. Increased soil temperature might increase N and P uptake capacity to a greater extent in species from warm and fluctuating soil habitats than in species from cold and stable soil environments. The few available data also indicate that increased soil temperature elicits a differential effect on uptake of NH % + versus NO $ −. Root uptake kinetics are generally down-regulated in response to long-term exposure to atmospheric N deposition. The extent of this down-regulation might, however, vary among species, stages of succession, land-use history and plant demand. Nonetheless, it is suggested that root N uptake kinetics might be an accurate biological indicator of the ecosystem capacity to retain N. The results reviewed here clearly highlight the scanty nature of the literature in the area of root nutrient absorption responses to global change. It is also clear that effects of one component of global change on root nutrient absorption capacity might be counterbalanced by another. Therefore, the generalizations offered here must be viewed with caution and more effort should be directed to rigorously test these initial observations in future research.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Model for Optimal Mycorrhizal Colonization along Altitudinal Gradients

Mycorrhizal associations are generally favourable for vascular plants in nutrient-poor conditions. Still, non-mycorrhizal plants are common in high arctic and alpine areas, which are often poor in nitrogen and phosphorus. The relative proportion of mycorrhizal plants has been found to decrease along with increasing altitude, suggesting that the advantage of the mycorrhizal symbiosis may change ...

متن کامل

Carbon cost of plant nitrogen acquisition: global carbon cycle impact from an improved plant nitrogen cycle in the Community Land Model.

Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition - C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity-optimized nutr...

متن کامل

Assessment of Root Growth and Physiological Responses of Four Bread Wheat (Triticum aestivum L.) Cultivars to Salinity Stress

Enlarged root systems that extend into the salt affected soil improve water and nutrient capture by plants and can increase plant productivity. In order to examine root system characteristics of four bread wheat cultivars contrasting in salt tolerance (Arg, Ofoq, Tajan and Morvarid) a greenhouse experiment was conducted with applying two salinity levels (0 and 150 mM NaCl) on plants grown in PV...

متن کامل

Swarming Behavior Emerging from the Uptake–Kinetics Feedback Control in a Plant-Root-Inspired Robot

This paper presents a plant root behavior-based approach to defining the control architecture of a plant-root-inspired robot, which is composed of three root-agents for nutrient uptake and one shoot-agent for nutrient redistribution. By taking inspiration and extracting key principles from the uptake of nutrient, movements and communication strategies adopted by plant roots, we developed an upt...

متن کامل

Heat Stress Decreases Levels of Nutrient-Uptake and -Assimilation Proteins in Tomato Roots

Global warming will increase root heat stress, which is already common under certain conditions. Effects of heat stress on root nutrient uptake have rarely been examined in intact plants, but the limited results indicate that heat stress will decrease it; no studies have examined heat-stress effects on the concentration of nutrient-uptake proteins. We grew Solanum lycopersicum (tomato) at 25 °C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000