Kinetics of light-driven oxygen evolution at α-Fe2O3 electrodes

نویسندگان

  • Laurence M. Peter
  • K. G. Upul Wijayantha
  • Asif A. Tahir
چکیده

5 The kinetics of light-driven oxygen evolution at polycrystalline α-Fe2O3 layers prepared by aerosolassisted chemical vapour deposition has been studied using intensity modulated photocurrent spectroscopy (IMPS). Analysis of the frequency-dependent IMPS response gives information about the competition between the 4-electron oxidation of water by photogenerated holes and losses due to electron-hole recombination via surface states. The very slow kinetics of oxygen evolution indicates the 10 presence of a kinetic bottleneck in the overall process. Surface treatment of the α-Fe2O3 with dilute cobalt nitrate solution leads to a remarkable improvement in the photocurrent response, but contrary to expectation, the results of this study show that this is not due to catalysis of hole transfer but is instead the consequence of almost complete suppression of surface recombination.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kinetics and mechanism of light-driven oxygen evolution at thin film α-Fe2O3 electrodes.

Rate constants for recombination and hole transfer during oxygen evolution at illuminated α-Fe(2)O(3) electrodes were measured by intensity-modulated photocurrent spectroscopy and found to be remarkably low. Treatment of the electrode with a Co(II) solution suppressed surface recombination but did not catalyse hole transfer. Intermediates in the reaction were detected spectroscopically.

متن کامل

Sono-synthesis of Novel Magnetic Nanocomposite (Ba-α-Bi2O3-γ-Fe2O3) for the Solar Mineralization of Amoxicillin in an Aqueous Solution

In this study, a novel magnetic nanocomposite (Ba-α-Bi2O3-γ-Fe2O3) was successfully synthesized through a combination of ultrasound and co-precipitation method under mild conditions. The structure of the synthesized nano-composite as a visible light photocatalyst was investigated by the XRD, TEM, HRTEM, UV-vis and FT-IR. The HRTEM confirmed that the nano-magnetic composites are rods with diamet...

متن کامل

Oxygen deficient α-Fe2O3 photoelectrodes: a balance between enhanced electrical properties and trap-mediated losses.

Intrinsic doping of hematite through the inclusion of oxygen vacancies (VO) is being increasingly explored as a simple, low temperature route to preparing active water splitting α-Fe2O3-x photoelectrodes. Whilst it is widely accepted that the introduction of VO leads to improved conductivities, little else is verified regarding the actual mechanism of enhancement. Here we employ transient absor...

متن کامل

Synergistic contributions by decreasing overpotential and enhancing charge-transfer in α-Fe2O3/Mn3O4/graphene catalysts with heterostructures for photocatalytic water oxidation.

A novel nanocomposite consisting of α-Fe2O3, Mn3O4 and reduced graphene oxide (r-GO) has been facilely synthesized through a two-step method: solvothermal reaction for Mn3O4-modified α-Fe2O3 (α-Fe2O3/Mn3O4) and self-assembly process for combining α-Fe2O3/Mn3O4 with r-GO (α-Fe2O3/Mn3O4/r-GO). The morphology and structure of the nanocomposite were characterized by X-ray diffraction (XRD), scannin...

متن کامل

New insights into water splitting at mesoporous α-Fe2O3 films: a study by modulated transmittance and impedance spectroscopies.

Thin mesoporous films of α-Fe(2)O(3) have been prepared on conducting glass substrates using layer-by-layer self-assembly of ca. 4 nm hydrous oxide nanoparticles followed by calcining. The electrodes were used to study the oxygen evolution reaction (OER) in the dark and under illumination using in situ potential-modulated absorption spectroscopy (PMAS) and light-modulated absorption spectroscop...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012