Signal-independent noise in intracortical brain-computer interfaces causes movement time properties inconsistent with Fitts' law.
نویسندگان
چکیده
OBJECTIVE Do movements made with an intracortical BCI (iBCI) have the same movement time properties as able-bodied movements? Able-bodied movement times typically obey Fitts' law: [Formula: see text] (where MT is movement time, D is target distance, R is target radius, and [Formula: see text] are parameters). Fitts' law expresses two properties of natural movement that would be ideal for iBCIs to restore: (1) that movement times are insensitive to the absolute scale of the task (since movement time depends only on the ratio [Formula: see text]) and (2) that movements have a large dynamic range of accuracy (since movement time is logarithmically proportional to [Formula: see text]). APPROACH Two participants in the BrainGate2 pilot clinical trial made cortically controlled cursor movements with a linear velocity decoder and acquired targets by dwelling on them. We investigated whether the movement times were well described by Fitts' law. MAIN RESULTS We found that movement times were better described by the equation [Formula: see text], which captures how movement time increases sharply as the target radius becomes smaller, independently of distance. In contrast to able-bodied movements, the iBCI movements we studied had a low dynamic range of accuracy (absence of logarithmic proportionality) and were sensitive to the absolute scale of the task (small targets had long movement times regardless of the [Formula: see text] ratio). We argue that this relationship emerges due to noise in the decoder output whose magnitude is largely independent of the user's motor command (signal-independent noise). Signal-independent noise creates a baseline level of variability that cannot be decreased by trying to move slowly or hold still, making targets below a certain size very hard to acquire with a standard decoder. SIGNIFICANCE The results give new insight into how iBCI movements currently differ from able-bodied movements and suggest that restoring a Fitts' law-like relationship to iBCI movements may require non-linear decoding strategies.
منابع مشابه
Movement Time Prediction in Human-Computer Interfaces
The prediction of movement time in human-computer interfaces as undertaken using Fitts' law is reviewed. Techniques for model building are summarized and three refinements to improve the theoretical and empirical accuracy of the law are presented. Refinements include (1) the Shannon formulation for the index of task difficulty, (2) new interpretations of "target width" for twoand three-dimensio...
متن کاملEvaluation of a modified Fitts law BCI target acquisition task in able and motor disabled individuals
A brain–computer interface (BCI) is a communication system that takes recorded brain signals and translates them into real-time actions, in this case movement of a cursor on a computer screen. This work applied Fitts’ law to the evaluation of performance on a target acquisition task during sensorimotor rhythm-based BCI training. Fitts’ law, which has been used as a predictor of movement time in...
متن کاملCortical Correlates of Fitts’ Law
Fitts' law describes the fundamental trade-off between movement accuracy and speed: it states that the duration of reaching movements is a function of target size (TS) and distance. While Fitts' law has been extensively studied in ergonomics and has guided the design of human-computer interfaces, there have been few studies on its neuronal correlates. To elucidate sensorimotor cortical activity...
متن کاملA simulation study on the effects of neuronal ensemble properties on decoding algorithms for intracortical brain–machine interfaces
BACKGROUND Intracortical brain-machine interfaces (BMIs) harness movement information by sensing neuronal activities using chronic microelectrode implants to restore lost functions to patients with paralysis. However, neuronal signals often vary over time, even within a day, forcing one to rebuild a BMI every time they operate it. The term "rebuild" means overall procedures for operating a BMI,...
متن کاملVirtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Brain-computer interfaces (BCIs) promise to restore independence for people with severe motor disabilities by translating decoded neural activity directly into the control of a computer. However, recorded neural signals are not stationary (that is, can change over time), degrading the quality of decoding. Requiring users to pause what they are doing whenever signals change to perform decoder re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neural engineering
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2017