Acute infusion of nicotine impairs nNOS-dependent reactivity of cerebral arterioles via an increase in oxidative stress.
نویسندگان
چکیده
Our goals were to determine whether acute exposure to nicotine alters neuronal nitric oxide synthase (nNOS)-dependent reactivity of cerebral arterioles and to identify a potential role for oxidative stress in nicotine-induced impairment in nNOS-dependent responses of cerebral arterioles. We measured in vivo diameter of cerebral arterioles to nNOS-dependent (N-methyl-d-aspartate and kainate) and -independent (nitroglycerin) agonists before and during acute treatment with nicotine. We found that nNOS-dependent, but not -independent, vasodilatation was impaired during treatment with nicotine. In addition, treatment of the cerebral microcirculation with tempol (1 h before infusion of nicotine) prevented nicotine-induced impairment in nNOS-dependent vasodilatation. Furthermore, the production of superoxide anion (lucigenin chemiluminescence) was increased in parietal cortex tissue of rats by treatment with nicotine, and this increase in superoxide anion production could be inhibited by tempol. Our findings suggest that acute exposure to nicotine impairs nNOS-dependent dilatation of cerebral arterioles by a mechanism that appears to be related to the formation of superoxide anion.
منابع مشابه
Acute nicotine treatment accelerates photochemically induced platelet aggregation in cerebral arterioles of mice: an in vivo study
When tobacco is smoked, chewed or snuffed, nicotine is absorbed by the lungs or mucous membrane and quickly moved into the bloodstream, where it is circulated throughout the brain. In fact nicotine is highly dangerous to be consumed in any form. The present study was conducted to know the adverse effects of nicotine on the platelet aggregation in cerebral microvessels of mice. Male mice of aver...
متن کاملChronic resveratrol treatment restores vascular responsiveness of cerebral arterioles in type 1 diabetic rats.
Decreased dilation of cerebral arterioles via an increase in oxidative stress may be a contributing factor in the pathogenesis of diabetes-induced complications leading to cognitive dysfunction and/or stroke. Our goal was to determine whether resveratrol, a polyphenolic compound present in red wine, has a protective effect on cerebral arterioles during type 1 diabetes (T1D). We measured the res...
متن کاملAcute nicotine treatment accelerates photochemically induced platelet aggregation in cerebral arterioles of mice: an in vivo study
When tobacco is smoked, chewed or snuffed, nicotine is absorbed by the lungs or mucous membrane and quickly moved into the bloodstream, where it is circulated throughout the brain. In fact nicotine is highly dangerous to be consumed in any form. The present study was conducted to know the adverse effects of nicotine on the platelet aggregation in cerebral microvessels of mice. Male mice of aver...
متن کاملSuperoxide dismutase restores endothelium-dependent arteriolar dilatation during acute infusion of nicotine.
We previously showed [Am. J. Physiol. 272 (Heart Circ. Physiol. 41): H2337-H2342, 1997] that nicotine impairs endothelium-dependent arteriolar dilatation. However, mechanisms that accounted for the effect of nicotine on endothelium-dependent vasodilatation were not examined. Thus the goal of this study was to examine the role of oxygen radicals in nicotine-induced impairment of arteriolar react...
متن کاملExercise training restores impaired dilator responses of cerebral arterioles during chronic exposure to nicotine.
Our goal was to determine whether exercise training (ExT) alleviates impaired nitric oxide synthase (NOS)-dependent dilation of pial arterioles during chronic exposure to nicotine. We measured dilation of cerebral (pial) arterioles in sedentary and exercised control and nicotine-treated (2 mg·kg(-1)·day(-1) for 4 wk via an osmotic minipump) rats to an endothelial NOS (eNOS)-dependent (ADP), a n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of applied physiology
دوره 103 6 شماره
صفحات -
تاریخ انتشار 2007