Dynamic Regression for Partial Correlation and Causality Analysis of Functional Brain Networks
نویسندگان
چکیده
We propose a general dynamic regression framework for partial correlation and causality analysis of functional brain networks. Using the optimal prediction theory, we present the solution of the dynamic regression problem by minimizing the entropy of the associated stochastic process. We also provide the relation between the solutions and the linear dependence models of Geweke and Granger and derive novel expressions for computing partial correlation and causality using an optimal prediction filter with minimum error variance. We use the proposed dynamic framework to study the intrinsic partial correlation and causality between seven different brain networks using resting state functional MRI (rsfMRI) data from the Human Connectome Project (HCP) and compare our results with those obtained from standard correlation and causality measures. The results show that our optimal prediction filter explains a significant portion of the variance in the rsfMRI data at low frequencies, unlike standard partial correlation analysis.
منابع مشابه
Evaluation of Model-Based Methods in Estimating Dynamic Functional Connectivity of Brain Regions
Today, neuroscientists are interested in discovering human brain functions through brain networks. In this regard, the evaluation of dynamic changes in functional connectivity of the brain regions by using functional magnetic resonance imaging data has attracted their attention. In this paper, we focus on two model-based approaches, called the exponential weighted moving average model and the d...
متن کاملAnalysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension
Introduction: Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obl...
متن کاملAssessment of Anesthesia Depth Using Effective Brain Connectivity Based on Transfer Entropy on EEG Signal
Introduction: Ensuring an adequate Depth of Anesthesia (DOA) during surgery is essential for anesthesiologists. Since the effect of anesthetic drugs is on the central nervous system, brain signals such as Electroencephalogram (EEG) can be used for DOA estimation. Anesthesia can interfere among brain regions, so the relationship among different areas can be a key factor in the anesthetic process...
متن کاملHigher Education and Labor Market Imbalances in Iran: A Dynamic Panel Data Analysis
Higher Education (HE) in Iran have been subject to a major expansion and massification in the recent years, in a way that number of students approximately tripled from 2006 to 2016. This would have possibly affected labor market or unemployment rate of the country. Considering both provincial and national level, this study investigates the relationship between HE expansion and unemployment rate...
متن کاملSparse Brain Network using Penalized Linear Regression
Sparse partial correlation is a useful connectivity measure for brain networks, especially, when it is hard to compute the exact partial correlation due to the small-n large-p situation. In this paper, we consider a sparse linear regression model with a l1-norm penalty for estimating sparse brain connectivity based on the partial correlation. For the numerical experiments, we construct the spar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017