Local Symplectic Algebra of Quasi-homogeneous Curves

نویسنده

  • WOJCIECH DOMITRZ
چکیده

We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold in [A1]. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a K-analytic curve is a finite dimensional vector space. We also show that the action of local diffeomorphisms preserving the quasi-homogeneous curve on this vector space is determined by the infinitesimal action of liftable vector fields. We apply these results to obtain the complete symplectic classification of curves with the semigroups (3, 4, 5), (3, 5, 7), (3, 7, 8).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Symplectic Algebra and Simple Symplectic Singularities of Curves

We study the local symplectic algebra of parameterized curves introduced by V. I. Arnold in [A1]. We use the method of algebraic restrictions to classify symplectic singularities of quasi-homogeneous curves. We prove that the space of algebraic restrictions of closed 2-forms to the germ of a quasihomogeneous curve is a finite dimensional vector space. We also show that the action of local diffe...

متن کامل

Symplectic singularities of varieties: The method of algebraic restrictions

We study germs of singular varieties in a symplectic space. In [A1], V. Arnol’d discovered so called ‘‘ghost’’ symplectic invariants which are induced purely by singularity. We introduce algebraic restrictions of di¤erential forms to singular varieties and show that this ghost is exactly the invariants of the algebraic restriction of the symplectic form. This follows from our generalization of ...

متن کامل

2 00 6 Algebraic computation of some intersection D - modules

Let X be a complex analytic manifold, D ⊂ X a locally quasi-homogeneous free divisor, E an integrable logarithmic connection with respect to D and L the local system of the horizontal sections of E on X − D. In this paper we give an algebraic description in terms of E of the regular holonomic DX-module whose de Rham complex is the intersection complex associated with L. As an application, we pe...

متن کامل

g-QUASI-FROBENIUS LIE ALGEBRAS

A Lie version of Turaev’s G-Frobenius algebras from 2-dimensional homotopy quantum field theory is proposed. The foundation for this Lie version is a structure we call a g-quasi-Frobenius Lie algebra for g a finite dimensional Lie algebra. The latter consists of a quasi-Frobenius Lie algebra (q, β) together with a left g-module structure which acts on q via derivations and for which β is g-inva...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009