An instrumented implant for in vivo measurement of contact forces and contact moments in the shoulder joint.

نویسندگان

  • P Westerhoff
  • F Graichen
  • A Bender
  • A Rohlmann
  • G Bergmann
چکیده

To improve implant design, fixation and preclinical testing, implant manufacturers depend on realistic data of loads acting on the shoulder joint. Furthermore, these data can help to optimize physiotherapeutic treatment and to advise patients in their everyday living conditions. Calculated shoulder joint loads vary extremely among different authors [Anglin C, Wyss UP, Pichora DR. Glenohumeral contact forces. Proc Inst Mech Eng [H] 2000;214:637-44]. Additionally the moments acting in the joint caused by friction or incongruent articular surfaces, for example, are not implemented in most models. An instrumented shoulder joint implant was developed to measure the contact forces and the contact moments acting in the glenohumeral joint. This article provides a detailed description of the implant, containing a nine-channel telemetry unit, six load sensors and an inductive power supply, all hermetically sealed inside the implant. The instrumented implant is based on a clinically proven BIOMET Biomodular shoulder replacement and was calibrated before implantation by using complex mathematical calculation routines in order to achieve an average measuring precision of approximately 2%.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.

Musculoskeletal modeling and optimization theory are often used to determine muscle forces in vivo. However, convincing quantitative evaluation of these predictions has been limited to date. The present study evaluated model predictions of knee muscle forces during walking using in vivo measurements of joint contact loading acquired from an instrumented implant. Joint motion, ground reaction fo...

متن کامل

Loading of the knee joint during activities of daily living measured in vivo in five subjects.

Detailed knowledge about loading of the knee joint is essential for preclinical testing of implants, validation of musculoskeletal models and biomechanical understanding of the knee joint. The contact forces and moments acting on the tibial component were therefore measured in 5 subjects in vivo by an instrumented knee implant during various activities of daily living. Average peak resultant fo...

متن کامل

Standardized Loads Acting in Hip Implants

With the increasing success of hip joint replacements, the average age of patients has decreased, patients have become more active and their expectations of the implant durability have risen. Thus, pre-clinical endurance tests on hip implants require defining realistic in vivo loads from younger and more active patients. These loads require simplifications to be applicable for simulator tests a...

متن کامل

In Vivo Glenoid Loads - Measured with Instrumented Implants in 6 Patients

INTRODUCTION Realistic loads acting in the shoulder joint are essential for improving implant design and testing. Additionally this data can be used to advise patients and medical staff which motions can be performed in the rehabilitation process, and which should be avoided short time post operative. So far, joint loads were estimated using computer models or cadaver experiments with strongly ...

متن کامل

An Adaptive-Robust Control Approach for Trajectory Tracking of two 5 DOF Cooperating Robot Manipulators Moving a Rigid Payload

In this paper, a dual system consisting of two 5 DOF (RRRRR) robot manipulators is considered as a cooperative robotic system used to manipulate a rigid payload on a desired trajectory between two desired initial and end positions/orientations. The forward and inverse kinematic problems are first solved for the dual arm system. Then, dynamics of the system and the relations between forces/momen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical engineering & physics

دوره 31 2  شماره 

صفحات  -

تاریخ انتشار 2009