An Approximate Singular Value Decomposition of Large Matrices in Julia
نویسنده
چکیده
In this project, I implement a parallel approximate singular value decomposition (SVD) in Julia. The approach taken here follows the algorithm described by Friedland et al., [1] and implement it using AbstractMatrices and DArrays in Julia to give the user additional flexibility. For additional speed, the algorithm makes direct calls to the DGEMV routine in the BLAS kernels. An error analysis using (1) random matrices drawn from a uniform distribution, (2) random matrices drawn from a normal distribution, and (3) a real image is performed to quantify the error induced by using the approximate algorithm. The error is found to be less than 6% and the algorithm exhibits good scaling for large matrices. This algorithm is ready to be used by other Julia users and can be found online at https://github.com/alexjturner/SVDapprox.
منابع مشابه
Symbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملOn Approximate Stationary Radial Solutions for a Class of Boundary Value Problems Arising in Epitaxial Growth Theory
In this paper, we consider a non-self-adjoint, singular, nonlinear fourth order boundary value problem which arises in the theory of epitaxial growth. It is possible to reduce the fourth order equation to a singular boundary value problem of second order given by w''-1/r w'=w^2/(2r^2 )+1/2 λ r^2. The problem depends on the parameter λ and admits multiple solutions. Therefore, it is difficult to...
متن کاملLarge Scale Sparse Singular Value Computations
In this paper, we present four numerical methods for computing the singular value decomposition (SVD) of large sparse matrices on a multiprocessor architecture. We particularly emphasize Lanczos and subspace iteration-based methods for determining several of the largest singular triplets (singular values and corresponding left-and right-singular vectors) for sparse matrices arising from two pra...
متن کاملNew Solutions for Singular Lane-Emden Equations Arising in Astrophysics Based on Shifted Ultraspherical Operational Matrices of Derivatives
In this paper, the ultraspherical operational matrices of derivatives are constructed. Based on these operational matrices, two numerical algorithms are presented and analyzed for obtaining new approximate spectral solutions of a class of linear and nonlinear Lane-Emden type singular initial value problems. The basic idea behind the suggested algorithms is basically built on transforming the eq...
متن کاملA Fast Implementation of Singular Value Thresholding Algorithm using Recycling Rank Revealing Randomized Singular Value Decomposition
In this paper, we present a fast implementation of the Singular Value Thresholding (SVT) algorithm for matrix completion. A rank-revealing randomized singular value decomposition (RSVD) algorithm is used to adaptively carry out partial singular value decomposition (SVD) to fast approximate the SVT operator given a desired, fixed precision. We extend the RSVD algorithm to a recycling rank reveal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013