Mechanisms of ischemic myocardial cell damage assessed by phosphorus-31 nuclear magnetic resonance.

نویسندگان

  • J T Flaherty
  • M L Weisfeldt
  • B H Bulkley
  • T J Gardner
  • V L Gott
  • W E Jacobus
چکیده

Phosphorus-31 nuclear magnetic resonance (31P NMR) can estimate tissue intracellular pH as well as the content of high-energy phosphate metabolites in isolated perfused hearts. We used 31P NMR to examine mechanisms associated with the recovery of ventricular function in hearts subjected to global ischemia and reperfusion, with special emphasis on intracellular pH, a previously unreported variable. Single-dose and multiple-dose administration of a hyperkalemic cardioplegic solution were compared with hypothermia alone in 18 isolated perfused rabbit hearts. Hearts in group 1 were subjected to 24 degrees C hypothermia during 60 minutes of global ischemia; group 2 hearts received a single injection of 37-mM KCL cardioplegic solution at 10 degrees C at the onset of ischemia; and group 3 hearts received a similar initial cardioplegic injection followed by two subsequent 24 degrees C injections at 20-minute intervals during the ischemic period. Using an intraventricular balloon, maximal dP/dt provided a quantitative index of left ventricular performance before and after ischemia. Return of ventricular function expressed as a percentage of control was 54 +/- 11% for group 1, 84 +/- 6% for group 2, and 101 +/- 18% for group 3. Differences in the rate of development of intracellular acidosis were noted during the 60-minute ischemic period. Intracellular pH fell to 6.09 +/- 0.12 in group 1, 6.31 +/- 0.09 in group 2, an 6.79 +/- 0.03 in group 3. In all three groups intracellular pH returned to control (pH 7.20) within 10 minutes of reflow. The metabolic correlates of functional recovery appeared to be the tissue content of ATP at the end of ischemia and after reflow. ATP content at the end of ischemia was 22 +/- 2% of control in group 1 hearts, 31 +/- 4% in group 2 and 64 +/- 2% in group 3. After 45 minutes of reperfusion, ATP levels recovered to 33 +/- 9% of control in group 1, to 71 +/- 9% in group 2 and to 86 +/- 6% in group 3. Although there were no differences between groups in the content of creatine phosphate after 60 minutes of ischemia, the rates of creatine phosphate decline were dissimilar. Further, during the early reflow period, a marked overshoot in tissue creatine phosphate was detected, especially in groups 1 and 2. Histologic damage assessed by light microscopy correlated with the metabolic data, confirming that multidose cardioplegia provided the best preservation of cellular morphology. These results demonstrate that the magnitude of intracellular acidosis and the associated increase in inorganic phosphate correlate inversely with recovery of postischemic ventricular structure and function. ATP, but not creatine phosphate, content correlates with return of contractile performance after reperfusion. The overshoot in creatine phosphate during early reperfusion might impede optimal restoration of ATP content and, as a result, optimal recovery of cell functions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of myocardial viability following ischemic and reperfusion injury using phosphorus 31 nuclear magnetic resonance spectroscopy in vivo.

Recovery of myocardial high-energy phosphate (HEP) metabolism after coronary occlusion and reperfusion may vary with ischemic duration and may provide information about the extent of tissue viability. To evaluate the differences between varying durations of ischemia and to attempt to identify metabolic indexes of salvaged viable tissue, intact New Zealand white rabbits underwent either 30 (grou...

متن کامل

Assessment of pharmacological treatment of myocardial infarction by phosphorus-31 NMR with surface coils.

Phosphorus-31 nuclear magnetic resonance (NMR) measurements with small surface coils have been used to observe phosphorus metabolism of perfused hearts within localized regions. The method allows for direct, noninvasive, sequential assessment of the altered regional metabolism resulting from myocardial infarction and its response to drug treatment, which cannot be observed by conventional techn...

متن کامل

Evaluation of high-energy phosphate metabolism during cardioplegic arrest and reperfusion: a phosphorus-31 nuclear magnetic resonance study.

Hypothermic potassium cardioplegia is now commonly used to protect the myocardium during surgically induced ischemia. Because the potassium-related membrane depolarization has been shown to increase calcium influx, we undertook this study to define the effects of varying the calcium content in hyperkalemic perfusates and the effects of using magnesium instead of or in addition to potassium as t...

متن کامل

Nicardipine reduces ischemic brain injury. Magnetic resonance imaging/spectroscopy study in cats.

We investigated whether the calcium channel entry blocker nicardipine would reduce ischemic brain damage in barbiturate-anesthetized cats subjected to permanent unilateral occlusion of the middle cerebral artery. The evolution of cerebral injury was assessed in vivo in 24 cats by a combination of proton magnetic resonance imaging and phosphorus-31 magnetic resonance spectroscopy for 5 hours fol...

متن کامل

Metabolic effects of adenosine on regional myocardial ischemia by phosphorus 31 nuclear magnetic resonance spectroscopy.

The metabolic effects of adenosine on regionally ischemic myocardium were investigated in an open-chest rabbit model by means of phosphorus 31 nuclear magnetic resonance (NMR) spectroscopy. Sixteen anesthetized New Zealand white rabbits were subjected to thoracotomy; a reversible snare occluder was placed around a large branch of the left circumflex coronary artery, and an NMR surface coil was ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Circulation

دوره 65 3  شماره 

صفحات  -

تاریخ انتشار 1982