Design and Analysis of a Novel Low-Power SRAM Bit-Cell Structure at Deep-Sub-Micron CMOS Technology for Mobile Multimedia Applications
نویسندگان
چکیده
The growing demand for high density VLSI circuits and the exponential dependency of the leakage current on the oxide thickness is becoming a major challenge in deep-submicron CMOS technology. In this work, a novel Static Random Access Memory (SRAM) Cell is proposed targeting to reduce the overall power requirements, i.e., dynamic and standby power in the existing dual-bit-line architecture. The active power is reduced by reducing the supply voltage when the memory is functional and the standby power is reduced by reducing the gate and sub-threshold leakage currents when the memory is idle. This paper explored an integrated approach at the architecture and circuit level to reduce the leakage power dissipation while maintaining high performance in deep-submicron cache memories. The proposed memory bit-cell makes use of the pMOS pass transistors to lower the gate leakage currents while fullsupply body-biasing scheme is used to reduce the sub-threshold leakage currents. To further reduce the leakage current, the stacking effect is used by switching off the stack transistors when the memory is ideal. In comparison to the conventional 6T SRAM bit-cell, the total leakage power is reduced by 50% while the cell is storing data ‘1’ and 46% when data ‘0’ at a very small area penalty. The total active power reduction is achieved by 89% when cell is storing data 0 or 1. The design simulation work was performed on the deep-sub-micron CMOS technology, the 45nm, at 25 0 C with VDD of 0.7V. KeywordsSRAM Bit-Cell; Gate Leakage; Sub-threshold Leakage; NC-SRAM; Asymmetric SRAM; PP-SRAM; Stacking Effect.
منابع مشابه
Characterization of a Novel Low-Power SRAM Bit-Cell Structure at Deep Sub-Micron CMOS Technology for Multimedia Applications
To meet the increasing demands for higher performance and low-power consumption in present and future Systemson-Chips (SoCs) require a large amount of on-die/embedded memory. In Deep-Sub-Micron (DSM) technology, it is coming as challenges, e.g., leakage power, performance, data retentation, and stability issues. In this work, we have proposed a novel low-stress SRAM cell, called as IP3 SRAM bit...
متن کاملLow Leakage Asynchronous PP based Single Ended 8T SRAM bit-cell at 45nm CMOS Technology
Low power SRAM memory designs has become challenging for portable device applications. Semiconductor/ VLSI industry growth has exponentially demanding low leakage power SRAM designs for high performance chips and microprocessors. To get optimized standard cell memory design for battery operated devices at deep sub micron CMOS technology, a low leakage Asynchronous 8T SRAM is proposed. In this p...
متن کاملCharacterization of PNN Stack SRAM Cell at Deep Sub-Micron Technology with High Stability and Low Leakage for Multimedia Applications
The explosive growth of battery operated devices has made lowpower design a priority in recent years Moreover, embedded SRAM units have become an important block in modern SoCs. Present day SRAMs are striving to increase bit counts while maintaining low power consumption and high performance. To achieve these objectives there is a need of continuous scaling of CMOS transistors, and so the proce...
متن کاملIp-sram Architecture at Deep Submicron Cmos Technology – a Low Power Design
The growing demand for high density VLSI circuits the leakage current on the oxide thickness is becoming a major challenge in deep-sub-micron CMOS technology. In deep submicron technologies, leakage power becomes a key for a low power design due to its ever increasing proportion in chip‟s total power consumption. Motivated by emerging battery-operated application on one hand and shrinking techn...
متن کاملLow-Power SRAM Cell at Deep Sub-Micron CMOS Technology for Multimedia Applications
Our life is filled by various modern electronic products. Semiconductor memories are essential parts of these products and have been growing in performance and density in accordance with Moore’s law like all silicon technology. The process technology has been scaling down from last two decades and to get the functional and high yielding design beyond 100-nm feature sizes the existing design app...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011