Title Nanosecond colloidal quantum dot lasers for sensing

نویسندگان

  • B. Guilhabert
  • C. Foucher
  • A-M. Haughey
  • E. Mutlugun
  • Y. Gao
  • J. Herrnsdorf
  • H. D. Sun
چکیده

Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors’ knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ/cm2 for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water. © 2014 Optical Society of America OCIS codes: (250.5590) Quantum-well, -wire and -dot devices; (140.3490) Lasers, distributedfeedback; (280.4788) Optical sensing and sensors. References and links 1. Q. Sun, Y. Wang, L. S. Li, D. Wang, T. Zhu, J. Xu, C. Yang, and Y. Li, “Bright, multicoloured light-emitting diodes based on quantum dots,” Nature Photon. 1, 717–722 (2007). 2. T. H. Kim, K. S. Cho, E. K. Lee, S. J. Lee, J. Chae, J. W. Kim, D. H. Kim, J. Y. Kwon, G. Amaratunga, S. Y. Lee, B. L. Choi, Y. Kuk, J. M. Kim, and K. Kim, “Full-colour quantum dot displays fabricated by transfer printing,” Nature Photon. 5, 176–182 (2011). 3. S. Nizamoglu, G. Zengin, and H. V. Demir, “Color-converting combinations of nanocrystals emitters for warmwhite light generation with high color rendering index,” Appl. Phys. Lett. 92, 031102 (2008). 4. S. Chanyawadee, P. G. Lagoudakis, R. T. Harley, M. D. B. Charlton, D. V. Talapin, H. W. Huang, and C. H. Lin, “Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer,” Adv. Mater. 22, 602–606 (2009). #200531 $15.00 USD Received 31 Oct 2013; accepted 7 Mar 2014; published 21 Mar 2014 (C) 2014 OSA 24 March 2014 | Vol. 22, No. 6 | DOI:10.1364/OE.22.007308 | OPTICS EXPRESS 7308 5. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Quantization of multiparticle auger rates in semiconductor quantum dots,” Science 287, 1011 (2000). 6. V. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H. J. Eisler, and M. G. Bawendi, “Optical gain and stimulated emission of nanocrystal quantum dots,” Science 290, 314 (2000). 7. A. V. Malko, A. A. Mikhailovsky, M. A. Petruska, J. A. Hollingsworth, H. Htoon, M. G. Bawendi, and V. I. Klimov, “From amplified spontaneous emission to microring lasing using nanocrystal quantum dot solids,” Appl. Phys. Lett. 81, 1303 (2002). 8. S. Hoogland, V. Sukhovatkin, I. Howard, S. Cauchi, L. Levina, and E. H. Sargent, “A solution-processed 1.53μm quantum dot laser with temperature-invariant emission wavelength,” Opt. Express 14, 3273–3281 (2006). 9. J. Schafer, J. P. Mondia, R. Sharma, Z. H. Lu, A. S. Susha, A. L. Rogach, and L. J. Wang, “Quantum dot microdrop laser,” Nano Lett. 8, 1709–1712 (2008). 10. V. M. Menon, M. Luberto, N. V. Valappil, and S. Chatterjee, “Lasing from InGaP quantum dots in a spin-coated flexible microcavity,” Opt. Express 16, 19535–19540 (2008). 11. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, “Red, green and blue lasing enabled by single-exciton gain in colloidal quantum dot films,” Nature Nanotechnology 7, 335–339 (2012). 12. Y. Chen, B. Guilhabert, J. Herrnsdorf, Y. Zhang, A. R. Mackintosh, R. A. Pethrick, E. Gu, N. Laurand, and M. D. Dawson, “Flexible distributed-feedback colloidal quantum dot laser,” Appl. Phys. Lett. 99, 241103 (2011). 13. F. Todescato, I. Fortunati, S. Gardin, E. Garbin, E. Collini, R. Bozio, J. J. Jasieniak, G. D. Giustina, G. Brusatin, S. Toffanin, and R. Signorini, “Soft-lithographed up-converted distributed feedback visible lasers based on CdSeCdZnS-ZnS quantum dots,” Adv. Func. Mater. 22, 337–344 (2012). 14. V. C. Sundar, H. J. Eisler, T. deng, Y. Chan, and L. T. amd M G. Bawendi, “Soft-lithographically embossed multilayered distributed feedback nanocrystal lasers,” Adv. Mater. 16, 2137–2141 (2004). 15. A. Rose, Z. Zhu, C. F. Madigan, T. M. Swager, and V. Bulovic, “Sensitivity gains in chemosensing by lasing action in organic polymers,” Nature 434, 876–879 (2005). 16. Y. Yang, G. A. Turnbull, and I. D. W. Samuel, “Sensitive explosive vapor detection with polyfluorene lasers,” Adv. Funct. Mater. 20, 2093–2097 (2010). 17. Y. Tan, C. Ge, A. Chu, M. Lu, W. Goldshlag, C. S. Huang, A. Pokhriyal, S. George, and B. T. Cunningham, “Plastic-based distributed feedback laser biosensors in microplate format,” IEEE Sensors J. 12, 1174–1180 (2012). 18. C. Vannahme, M. C. Leung, F. Richter, C. L. C. Smith, P. G. Hermannsson, and A. Kristensen, “Nanoimprinted distributed feedback lasers comprising TiO2 tin films: design and guidelines for high performance sensing,” Laser Photonics Rev. 7, 1–7 (2013). 19. E. Mutlugun, P. L. Hernandez-Martinez, C. Eroglu, Y. Coskun, T. Erdem, V. K. Sharma, E. Unal, S. K. Panda, S. G. Hickey, N. Gaponik, and H. V. A. Eychmller, “Large-are (over 50cm x 50cm) freestanding films of colloidal InP–ZnS quantum dots,” Nano Lett. 12, 3986–3993 (2012). 20. H. Mattoussi, J. M. Mauro, E. R. Goldman, G. P. Anderson, V. C. Sundar, F. V. Mikulec, and M. G. Bawendi, “Self-assembly of CdSe–ZnS quantum dot bioconjugates using an enginneered recombinant protein,” JACS 122, 12142–12150 (2000). 21. D. R. Larson, W. R. Zipfel, R. M. Williams, S. W. Clark, M. P. Bruchez, F. W. Wise, and W. W. Webb, “Watersoluble quantum dots for multiphoton fluorescence imaging in vivo,” Science 300, 1434–1436 (2003). 22. Y. Boucher, A. Deryagin, V. Kuchinskii, and G. Sokolovskii, “Near-threshold spectral and modal characterisitics of a curved-grating quantum well distributed feedback,” Nanotechnology 14, 615–618 (2003). 23. A. M. Haughey, B. Guilhabert, A. L. Kanibolotsky, P. J. Skabara, G. A. Burley, M. D. Dawson, and N. Laurand, “An organic semiconductor laser based on star-shaped truxene-core oligomers for refractive index sensing,” Sensors and Actuators B: Chemical 185, 132–139 (2013).

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosecond colloidal quantum dot lasers for sensing.

Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors' knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting ...

متن کامل

Introducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells

With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...

متن کامل

Effect of PbS Film Thickness on the Performance of Colloidal Quantum Dot Solar Cells

Colloidal quantum dots offer broad tuning of semiconductor band structure via the quantum size effect. In this paper, we present a detailed investigation on the influence of the thickness of colloidal lead sulfide (PbS) nanocrystals (active layer) to the photovoltaic performance of colloidal quantum dot solar cells. The PbS nanocrystals (QDs) were synthesized in a non-coordinating solvent, 1-oc...

متن کامل

A solution-processed 1.53 mum quantum dot laser with temperature-invariant emission wavelength.

Sources of coherent, monochromatic short-wavelength infrared (1-2 mum) light are essential in telecommunications, biomedical diagnosis, and optical sensing. Today's semiconductor lasers are made by epitaxial growth on a lattice-matched single-crystal substrate. This strategy is incompatible with integration on silicon. Colloidal quantum dots grown in solution can, in contrast, be coated onto an...

متن کامل

Microsecond-sustained lasing from colloidal quantum dot solids

Colloidal quantum dots have grown in interest as materials for light amplification and lasing in view of their bright photoluminescence, convenient solution processing and size-controlled spectral tunability. To date, lasing in colloidal quantum dot solids has been limited to the nanosecond temporal regime, curtailing their application in systems that require more sustained emission. Here we fi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017