Powering Triton’s recent geological activity by obliquity tides: Implications for Pluto geology
نویسنده
چکیده
We investigate the origins of Triton’s deformed and young surface. Assuming Triton was captured early in Solar System history, the bulk of the energy released during capture will have been lost, and cannot be responsible for its present-day activity. Radiogenic heating is sufficient to maintain a long-lived ocean beneath a conductive ice shell, but insufficient to cause convective deformation and yielding at the surface. However, Triton’s high inclination likely causes a significant ( 0.7 ) obliquity, resulting in large heat fluxes due to tidal dissipation in any subsurface ocean. For a 300 km thick ice shell, the estimated ocean heat production rate ( 0.3 TW) is capable of producing surface yielding and mobile-lid convection. Requiring convection places an upper bound on the ice shell viscosity, while the requirement for yielding imposes a lower bound. Both bounds can be satisfied with an ocean temperature 240 K for our nominal temperature-viscosity relationship, suggesting the presence of an antifreeze such as NH3. In our view, Triton’s geological activity is driven by obliquity tides, which arise because of its inclination. In contrast, Pluto is unlikely to be experiencing significant tidal heating. While Pluto may have experienced ancient tectonic deformation, we do not anticipate seeing the kind of young, deformed surfaces seen at Triton. 2014 Elsevier Inc. All rights reserved.
منابع مشابه
Effect of engineering geological characteristics of Tehran’s recent alluvia on ground settlement due to tunneling
Ground settlement due to the shallow tunneling in urban areas can have considerable implications for aboveground civilinfrastructures. Engineering geological characteristics of the tunnel host ground including geotechnical parameters of surrounding soil,groundwater situation, and in situ stress condition are amongst the most important factors affecting settlement. In this research, groundsettle...
متن کاملObliquity Tides on Hot Jupiters
Obliquity tides are a potentially important source of heat for extrasolar planets on close-in orbits. Although tidal dissipation will usually reduce the obliquity to zero, a nonzero obliquity can persist if the planet is in a Cassini state, a resonance between spin precession and orbital precession. Obliquity tides might be the cause of the anomalously large size of the transiting planet HD 209...
متن کاملThe geology of Pluto and Charon through the eyes of New Horizons.
NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparen...
متن کاملPeriods of active permafrost layer formation during the geological history of Mars: Implications for circum-polar and mid-latitude surface processes
Permafrost is ground remaining frozen (temperatures are below the freezing point of water) for more than two consecutive years. An active layer in permafrost regions is defined as a near-surface layer that undergoes freeze–thaw cycles due to day-average surface and soil temperatures oscillating about the freezing point of water. A ‘‘dry’’ active layer may occur in parched soils without free wat...
متن کاملThe Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years
Data from the New Horizons mission to Pluto show no craters on Sputnik Planum down to the detection limit (2 km for low resolution data, 625 m for high resolution data). The number of small Kuiper Belt Objects that should be impacting Pluto is known to some degree from various astronomical surveys. We combine these geological and telescopic observations to make an order of magnitude estimate th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014