Clinical Studies Autotransplantation of Human Carotid Body Cell Aggregates for Treatment of Parkinson’s Disease
نویسندگان
چکیده
Received, October 23, 2002. Accepted, March 27, 2003. OBJECTIVE: In this study, we assessed the feasibility of autotransplantation of carotid body (CB) cell aggregates into the striatum for the treatment of patients with Parkinson’s disease (PD). METHODS: Six patients with advanced PD underwent bilateral autotransplantation of CB cell aggregates into the striatum. They were evaluated clinically preoperatively and for 18 months after surgery according to the recommendations of the Core Assessment Program for Intracerebral Transplantation. RESULTS: No major complications or adverse events resulted from the cell implantation or surgical procedures. During the course of the study, there was no significant aggravation of dyskinesia or decline in cognitive function in any of the patients. Five of the six patients who underwent transplantation manifested a measurable degree of clinical improvement evidenced by standardized clinical rating scales for PD. A decrease in the blinded Unified Parkinson’s Disease Rating Scale Part III in the “off” state, the main measure of transplant efficacy in our study, was found to be maximal (between 26 and 74%) at 6 months after surgery. At 1 year, clear reductions in the blinded Unified Parkinson’s Disease Rating Scale Part III were maintained in three patients (24, 38, and 52%, respectively). Modest improvement was seen in two patients (13 and 17%), and the sole patient who showed no improvement had the most fibrosis in the CB. The age of the patient and the state of the CB tissue were adversely correlated with clinical improvement after CB autotransplantation. CONCLUSION: This pilot study indicates that CB autograft transplantation is a relatively simple, safe, and viable therapeutical approach for the treatment of patients with advanced PD. More studies are needed to optimize the procedure and to assess its general applicability for the treatment of patients with PD.
منابع مشابه
Carotid body autotransplantation in Parkinson disease: a clinical and positron emission tomography study.
BACKGROUND Carotid body (CB) glomus cells are highly dopaminergic and express the glial cell line derived neurotrophic factor. The intrastriatal grafting of CB cell aggregates exerts neurotrophic actions on nigrostriatal neurons in animal models of Parkinson disease (PD). OBJECTIVE We conducted a phase I-II clinical study to assess the feasibility, long term safety, clinical and neurochemical...
متن کاملDopamine-Synthesizing Neurons: An Overview of Their Development and Application for Cell Therapy
Cell-gene therapy is a dynamic constituent of novel medical biotechnology. Neurodegenerative disordersin which damage to or demise of specific brain cell types plays central role, are clear examples of diseasecandidate for cell replacement therapy. Dopaminergic (DAergic) neurons biosynthesize dopamine, a vitalneurotransmitter in the central nervous system. Due to the involveme...
متن کاملStem cell-based approach for the treatment of Parkinson\'s disease
Parkinson’s disease (PD) is the second most common neurodegenerative brain disorder which is around 1.5 times more common in men than in women. Currently, drug medications, surgery, and lifestyle changes are common approaches to PD, while all of them focused on reducing the symptoms. Therefore, regenerative medicine based on stem cell (SC) therapies has raised a promising hope. Various types ...
متن کاملThe Effects of Boswellia Resin Extract on Dopaminergic Cell line, SK-N-SH, against MPP+-Induced Neurotoxicity
Introduction: Oxidative stress and neuroinflammation are involved in neurodegeneration procedure in Parkinson’s disease. Recently, neuroprotective potential of Boswellia resin has been demonstrated. Therefore, this study examined whether administration of Boswellia resin would attenuate MPP+- induced neuronal death in SK-N-SH- cell line, a human dopaminergic neurons- in vitro. Methods: Boswelli...
متن کاملWhat are Stem Cells?
Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003