Multiple imputation inference for multivariate multilevel continuous data with ignorable non-response

نویسنده

  • Recai M. Yucel
چکیده

Methods specifically targeting missing values in a wide spectrum of statistical analyses are now part of serious statistical thinking due to many advances in computational statistics and increased awareness among sophisticated consumers of statistics. Despite many advances in both theory and applied methods for missing data, missing-data methods in multilevel applications lack equal development. In this paper, I consider a popular inferential tool via multiple imputation in multilevel applications with missing values. I specifically consider missing values occurring arbitrarily at any level of observational units. I use Bayesian arguments for drawing multiple imputations from the underlying (posterior) predictive distribution of missing data. Multivariate extensions of well-known mixed-effects models form the basis for simulating the posterior predictive distribution, hence creating the multiple imputations. The discussion of these topics is demonstrated in an application assessing correlates to unmet need for mental health care among children with special health care needs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fully Bayesian inference under ignorable missingness in the presence of auxiliary covariates.

In order to make a missing at random (MAR) or ignorability assumption realistic, auxiliary covariates are often required. However, the auxiliary covariates are not desired in the model for inference. Typical multiple imputation approaches do not assume that the imputation model marginalizes to the inference model. This has been termed "uncongenial" [Meng (1994, Statistical Science 9, 538-558)]....

متن کامل

Multilevel models with multivariate mixed response types

We build upon the existing literature to formulate a class of models for multivariate mixtures of Gaussian, ordered or unordered categorical responses and continuous distributions that are not Gaussian, each of which can be defined at any level of a multilevel data hierarchy. We describe a Markov chain Monte Carlo algorithm for fitting such models. We show how this unifies a number of disparate...

متن کامل

Gaussianization-based quasi-imputation and expansion strategies for incomplete correlated binary responses.

New quasi-imputation and expansion strategies for correlated binary responses are proposed by borrowing ideas from random number generation. The core idea is to convert correlated binary outcomes to multivariate normal outcomes in a sensible way so that re-conversion to the binary scale, after performing multiple imputation, yields the original specified marginal expectations and correlations. ...

متن کامل

Parametric fractional imputation for mixed models with nonignorable missing data

Inference in the presence of non-ignorable missing data is a widely encountered and difficult problem in statistics. Imputation is often used to facilitate parameter estimation, which allows one to use the complete sample estimators on the imputed data set. We develop a parametric fractional imputation (PFI) method proposed by Kim (2011), which simplifies the computation associated with the EM ...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 366  شماره 

صفحات  -

تاریخ انتشار 2008