Endomembrane proteomics reveals putative enzymes involved in cell wall metabolism in wheat grain outer layers
نویسندگان
چکیده
Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).
منابع مشابه
Strategic distribution of protective proteins within bran layers of wheat protects the nutrient-rich endosperm.
Bran from bread wheat (Triticum aestivum 'Babbler') grain is composed of many outer layers of dead maternal tissues that overlie living aleurone cells. The dead cell layers function as a barrier resistant to degradation, whereas the aleurone layer is involved in mobilizing organic substrates in the endosperm during germination. We microdissected three defined bran fractions, outer layers (epide...
متن کاملThe Wheat Grain Contains Pectic Domains Exhibiting Specific Spatial and Development-Associated Distribution
Cell walls are complex structures surrounding plant cells with a composition that varies among species and even within a species between organs, cell types and development stages. For years, cell walls in wheat grains were described as simple walls consisting mostly of arabinoxylans and mixed-linked beta glucans. Proteomic and transcriptomic studies identified enzyme families involved in the sy...
متن کاملComparative Phosphoproteomic Analysis under High-Nitrogen Fertilizer Reveals Central Phosphoproteins Promoting Wheat Grain Starch and Protein Synthesis
Nitrogen (N) is a macronutrient important for plant growth and development. It also strongly influences starch and protein synthesis, closely related to grain yield and quality. We performed the first comparative phosphoproteomic analysis of developing wheat grains in response to high-N fertilizer. Physiological and biochemical analyses showed that application of high-N fertilizer resulted in s...
متن کاملMolecular dissection of variation in carbohydrate metabolism related to water-soluble carbohydrate accumulation in stems of wheat.
Water-soluble carbohydrates (WSCs; composed of mainly fructans, sucrose [Suc], glucose [Glc], and fructose) deposited in wheat (Triticum aestivum) stems are important carbon sources for grain filling. Variation in stem WSC concentrations among wheat genotypes is one of the genetic factors influencing grain weight and yield under water-limited environments. Here, we describe the molecular dissec...
متن کاملDevelopmental changes in the metabolic protein profiles of wheat endosperm.
A combined two-dimensional gel electrophoresis-mass spectrometry approach was utilized to identify over 250 proteins of wheat (Triticum aestivum L., cv. Butte 86) starchy endosperm that participate in 13 biochemical processes: ATP interconversion reactions, carbohydrate metabolism, cell division, cytoskeleton, lipid metabolism, nitrogen metabolism, protein synthesis/assembly, protein turnover, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 66 شماره
صفحات -
تاریخ انتشار 2015