Efficient Clause Learning for Quantified Boolean Formulas via QBF Pseudo Unit Propagation
نویسندگان
چکیده
Recent solvers for quantified boolean formulas (QBF) use a clause learning method based on a procedure proposed by Giunchiglia et al. (JAIR 2006), which avoids creating tautological clauses. Recently, an exponential worst case for this procedure has been shown by Van Gelder (CP 2012). That paper introduced QBF Pseudo Unit Propagation (QPUP) for non-tautological clause learning in a limited setting and showed that its worst case is theoretically polynomial, although it might be impractical in a high-performance QBF solver, due to excessive time and space consumption. No implementation was reported. We describe an enhanced version of QPUP learning that is practical to incorporate into high-performance QBF solvers, being compatible with pure-literal rules and dependency schemes. It can be used for proving in a concise format that a QBF formula is either unsatisfiable or satisfiable (working on both proofs in tandem). A lazy version of QPUP permits non-tautological clauses to be learned without actually carrying out resolutions, but this version is unable to produce proofs. Experimental results show that QPUP is somewhat faster than the previous nontautological clause learning procedure on benchmarks from QBFEVAL-12-SR.
منابع مشابه
Exploiting QBF Duality on a Circuit Representation
Search based solvers for Quantified Boolean Formulas (QBF) have adapted the SAT solver techniques of unit propagation and clause learning to prune falsifying assignments. The technique of cube learning has been developed to help them prune satisfying assignments. Cubes, however, have not been able to achieve the same degree of effectiveness as clauses. In this paper we demonstrate how a circuit...
متن کاملA Non-prenex, Non-clausal QBF Solver with Game-State Learning
We describe a DPLL-based solver for the problem of quantified boolean formulas (QBF) in non-prenex, non-CNF form. We make two contributions. First, we reformulate clause/cube learning, extending it to non-prenex instances. We call the resulting technique game-state learning. Second, we introduce a propagation technique using ghost literals that exploits the structure of a non-CNF instance in a ...
متن کاملDependency Learning for QBF
Quantified Boolean Formulas (QBFs) can be used to succinctly encode problems from domains such as formal verification, planning, and synthesis. One of the main approaches to QBF solving is Quantified Conflict Driven Clause Learning (QCDCL). By default, QCDCL assigns variables in the order of their appearance in the quantifier prefix so as to account for dependencies among variables. Dependency ...
متن کاملBlocked Clause Elimination for QBF
Quantified Boolean formulas (QBF) provide a powerful framework for encoding problems from various application domains, not least because efficient QBF solvers are available. Despite sophisticated evaluation techniques, the performance of such a solver usually depends on the way a problem is represented. However, the translation to processable QBF encodings is in general not unique and may eithe...
متن کاملQuBE++: An Efficient QBF Solver
In this paper we describe QUBE++, an efficient solver for Quantified Boolean Formulas (QBFs). To the extent of our knowledge, QUBE++ is the first QBF reasoning engine that uses lazy data structures both for unit clauses propagation and for pure literals detection. QUBE++ also features non-chronological backtracking and a branching heuristic that leverages the information gathered during the bac...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013