Artificial immune systems for information filtering : focusing on profile adaptation

نویسنده

  • Nurulhuda Firdaus Mohd Azmi
چکیده

The human immune system has characteristics such as self-organisation, robustness and adaptivity that may be useful in the development of adaptive systems. One suitable application area for adaptive systems is Information Filtering (IF). Within the context of IF, learning and adapting user profiles is an important research area. In an individual profile, an IF system has to rely on the ability of the user profile to maintain a satisfactory level of filtering accuracy for as long as it is being used. This thesis explores a possible way to enable Artificial Immune Systems (AIS) to filter information in the context of profile adaptation. Previous work has investigated this issue from the perspective of self-organisation based on Autopoetic Theory. In contrast, this current work approaches the problem from the perspective of diversity inspired by the concept of dynamic clonal selection and gene library to maintain sufficient diversity. An immune-inspired IF for profile adaptation is proposed and developed. This algorithm is demonstrated to work in detecting relevant documents by using a single profile to recognize a user’s interests and to adapt to changes in them. We employed a virtual user tested on a web document corpus to test the profile on learning of an emerging new topic of interest and forgetting uninteresting topics. The results clearly indicate the profile’s ability to adapt to frequent variations and radical changes in user interest. This work has focused on textual information, but it may have the potential to be applied in other media such as audio and images in which adaptivity to dynamic environments is crucial. These are all interesting future directions in which this work might develop.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semantic Preserving Data Reduction using Artificial Immune Systems

Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...

متن کامل

A New Similarity Measure Based on Item Proximity and Closeness for Collaborative Filtering Recommendation

Recommender systems utilize information retrieval and machine learning techniques for filtering information and can predict whether a user would like an unseen item. User similarity measurement plays an important role in collaborative filtering based recommender systems. In order to improve accuracy of traditional user based collaborative filtering techniques under new user cold-start problem a...

متن کامل

Intelligent Approach for Attracting Churning Customers in Banking Industry Based on Collaborative Filtering

During the last years, increased competition among banks has caused many developments in banking experiences and technology, while leading to even more churning customers due to their desire of having the best services. Therefore, it is an extremely significant issue for the banks to identify churning customers and attract them to the banking system again. In order to tackle this issue, this pa...

متن کامل

An Immune-based Approach to Document Classification

artificial immune system, document classification, machine learning, concept learning, coevolution The human immune system as a biological complex adaptive system has provided inspiration for a range of innovative problem solving techniques in areas such as computer security, knowledge management and information retrieval. In this paper the construction and performance of a novel immune-based l...

متن کامل

Landau Theory of Adaptive Integration in Computational Intelligence

Computational Intelligence (CI) is a sub-branch of Artificial Intelligence paradigm focusing on the study of adaptive mechanisms to enable or facilitate intelligent behavior in complex and changing environments. There are several paradigms of CI [like artificial neural networks, evolutionary computations, swarm intelligence, artificial immune systems, fuzzy systems and many others], each of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014