A Log-Robust Optimization Approach to Portfolio Management
نویسندگان
چکیده
We present a robust optimization approach to portfolio management under uncertainty that builds upon insights gained from the well-known Lognormal model for stock prices, while addressing that model’s limitations, in particular, the issue of fat tails being underestimated in the Gaussian framework and the active debate on the correct distribution to use. Our approach, which we call Log-robust in the spirit of the Lognormal model, does not require any probabilistic assumption, and incorporates the randomness on the continuously compounded rates of return by using range forecasts and a budget of uncertainty, thus capturing the decision-maker’s degree of risk aversion through a single, intuitive parameter. Our objective is to maximize the worst-case portfolio value (over a set of allowable deviations of the uncertain parameters from their nominal values) at the end of the time horizon in a one-period setting; short sales are not allowed. We formulate the robust problem as a linear programming problem and derive theoretical insights into the worst-case uncertainty and the optimal allocation. We then compare in numerical experiments the Log-robust approach with the traditional robust approach, where range forecasts are applied directly to the stock returns. Our results indicate that the Log-robust approach significantly outperforms the benchmark with respect to 95% or 99% Value-at-Risk. This is because the traditional robust approach leads to portfolios that are far less diversified.
منابع مشابه
Robustness-based portfolio optimization under epistemic uncertainty
In this paper, we propose formulations and algorithms for robust portfolio optimization under both aleatory uncertainty (i.e., natural variability) and epistemic uncertainty (i.e., imprecise probabilistic information) arising from interval data. Epistemic uncertainty is represented using two approaches: (1) moment bounding approach and (2) likelihood-based approach. This paper first proposes a ...
متن کاملPrimal and dual robust counterparts of uncertain linear programs: an application to portfolio selection
This paper proposes a family of robust counterpart for uncertain linear programs (LP) which is obtained for a general definition of the uncertainty region. The relationship between uncertainty sets using norm bod-ies and their corresponding robust counterparts defined by dual norms is presented. Those properties lead us to characterize primal and dual robust counterparts. The researchers show t...
متن کاملRobust portfolio selection with polyhedral ambiguous inputs
Ambiguity in the inputs of the models is typical especially in portfolio selection problem where the true distribution of random variables is usually unknown. Here we use robust optimization approach to address the ambiguity in conditional-value-at-risk minimization model. We obtain explicit models of the robust conditional-value-at-risk minimization for polyhedral and correlated polyhedral am...
متن کاملA Robust Knapsack Based Constrained Portfolio Optimization
Many portfolio optimization problems deal with allocation of assets which carry a relatively high market price. Therefore, it is necessary to determine the integer value of assets when we deal with portfolio optimization. In addition, one of the main concerns with most portfolio optimization is associated with the type of constraints considered in different models. In many cases, the resulted p...
متن کاملShort sales in Log-robust portfolio management
This paper extends the Log-robust portfolio management approach to the case with short sales, i.e., the case where the manager can sell shares he does not yet own. We model the continuously compounded rates of return, which have been established in the literature as the true drivers of uncertainty, as uncertain parameters belonging to polyhedral uncertainty sets, and maximize the worst-case por...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008