The Role of Perineuronal Nets in Regulating Barrel Cortex Physiology

نویسندگان

  • Philip Chu
  • Joshua C. Brumberg
چکیده

The Role of Perineuronal Nets in Regulating Barrel Cortex Physiology by Philip Chu Advisor: Joshua C. Brumberg, Ph.D. The ability of the brain to adapt to changing environmental conditions is regulated by genetic and environmental factors. One component of the brain extracellular matrix, a scaffold of proteins and proteoglycans, tightly ensheaths the soma and proximal processes of neurons. These Perineuronal nets (PNNs) play protective and structural roles in the brain, but also regulate plasticity and behavior. Their developmental expression is highly attenuated following sensory deprivation, or pharmacological silencing of neuronal activity. Thus, PNNs contribute to the activity dependent regulation of plasticity in the brain. Although PNNs are relatively ubiquitous in the neocortex, little is known about the degree to which they impact the physiology of the diverse neuronal phenotypes that exist there. This research focused on determining the experience dependent maturation of PNNs in different cortical layers and whether the alterations to neuronal intrinsic properties following sensory deprivation could be explained by PNN reductions. Finally, we sought to determine what aspects of intrinsic and synaptic physiology are regulated by PNNs in the hope of providing future direction for understanding their fundamental role in the neocortex. This research produced a number of key findings: 1) PNN development in the granular and supragranular layers depend more on sensory input than the infragranular layers

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sensory deprivation alters aggrecan and perineuronal net expression in the mouse barrel cortex.

An important role for the neural extracellular matrix in modulating cortical activity-dependent synaptic plasticity has been established by a number of recent studies. However, identification of the critical molecular components of the neural matrix that mediate these processes is far from complete. Of particular interest is the perineuronal net (PN), an extracellular matrix component found sur...

متن کامل

Effects of Dimethyl Sulfoxide on Neuronal Response Characteristics in Deep Layers of Rat Barrel Cortex

Introduction: Dimethyl sulfoxide (DMSO) is a chemical often used as a solvent for waterinsoluble drugs. In this study, we evaluated the effect of intracerebroventricular (ICV) administration of DMSO on neural response characteristics (in 1200–1500 μm depth) of the rat barrel cortex. Methods: DMSO solution was prepared in 10% v/v concentration and injected into the later...

متن کامل

Modulatory Effects of Memantine on Neuronal Response Properties in Rat Barrel Cortex

Introduction: Memantine as N-Methyl-D-aspartic acid (NMDA) receptor antagonist is used in some neurological disorders. It has been reported that memantine has modulatory effects on the somatosensory information processing in healthy subjects. This study investigated the effect of memantine on electrophysiological properties of barrel cortex neurons in male rats. Methods: Single unit recording ...

متن کامل

Effect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat

Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...

متن کامل

Expression of chondroitin sulfate proteoglycans in barrel field of mouse and rat somatosensory cortex.

Chondroitin sulfate proteoglycans (CSPGs) consist of chondroitin sulfate (CS) glycosaminoglycans (GAGs) and core protein and regulate the migration, axonal outgrowth, and synaptogenesis in mammalian brains. In the present study, we investigated the localization of CSPGs, the effects of sensory deprivation on the density of perineuronal nets (PNNs), and the effects of chondroitinase ABC (Chase) ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016