High-Performance Graph Algorithms from Parallel Sparse Matrices
نویسندگان
چکیده
Large–scale computation on graphs and other discrete structures is becoming increasingly important in many applications, including computational biology, web search, and knowledge discovery. High– performance combinatorial computing is an infant field, in sharp contrast with numerical scientific computing. We argue that many of the tools of high-performance numerical computing – in particular, parallel algorithms and data structures for computation with sparse matrices – can form the nucleus of a robust infrastructure for parallel computing on graphs. We demonstrate this with an implementation of a graph analysis benchmark using the sparse matrix infrastructure in Star-P, our parallel dialect of the Matlab programming language.
منابع مشابه
Investigating the Effects of Hardware Parameters on Power Consumptions in SPMV Algorithms on Graphics Processing Units (GPUs)
Although Sparse matrix-vector multiplication (SPMVs) algorithms are simple, they include important parts of Linear Algebra algorithms in Mathematics and Physics areas. As these algorithms can be run in parallel, Graphics Processing Units (GPUs) has been considered as one of the best candidates to run these algorithms. In the recent years, power consumption has been considered as one of the metr...
متن کاملHighly Parallel Sparse Matrix-Matrix Multiplication
Generalized sparse matrix-matrix multiplication is a key primitive for many high performance graph algorithms as well as some linear solvers such as multigrid. We present the first parallel algorithms that achieve increasing speedups for an unbounded number of processors. Our algorithms are based on two-dimensional block distribution of sparse matrices where serial sections use a novel hyperspa...
متن کاملMatrix Ordering Strategies for Process Engineering: Graph Partitioning Algorithms for Parallel Computation
The solution of large-scale chemical process simulation and optimization problems using parallel computation requires algorithms that can take advantage of multiprocessing when solving the large, sparse matrices that arise. Parallel algorithms require that the matrices be partitioned in order to distribute computational work across processors. One way to accomplish this is to reorder the matrix...
متن کاملUnsymmetric-pattern Multifrontal Methods for Parallel Sparse Lu Factorization
Sparse matrix factorization algorithms are typically characterized by irregular memory access patterns that limit their performance on parallel-vector supercomputers. For symmetric problems, methods such as the multifrontal method replace irregular operations with dense matrix kernels. However, no e cient method based primarily on dense matrix kernels exists for matrices whose pattern is very u...
متن کاملA Parallel Gauss-Seidel Algorithm for Sparse Power Systems Matrices
We describe the implementation and performance of an e cient parallel Gauss-Seidel algorithm that has been developed for irregular, sparse matrices from electrical power systems applications. Although, Gauss-Seidel algorithms are inherently sequential, by performing specialized orderings on sparse matrices, it is possible to eliminate much of the data dependencies caused by precedence in the ca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006