Collocation Methods for Boundary Value Problems on 'Long' Intervals
نویسندگان
چکیده
This paper deals with the numerical solution of boundary value problems of ordinary differential equations posed on infinite intervals. We cut the infinite interval at a finite, large enough point and insert additional, so-called asymptotic boundary conditions at the far (right) end and then solve the resulting two-point boundary value problem by an /1-stable symmetric collocation method. Problems arise, because standard theory predicts the use of many grid points as the length of the interval increases. Using the exponential decay of the 'infinite' solution, an 'asymptotic' a priori mesh-size sequence which increases exponentially, and which therefore only employs a reasonable number of meshpoints, is developed and stability, as the length of the interval tends to infinity, is shown. We also show that the condition number of the collocation equations is asymptotically proportional to the number of meshpoints employed when using this exponentially graded mesh. Using £-stage collocation at Gaussian points and requiring an accuracy O(e) at the knots implies that the number of meshpoints is 0(c~l/2k) as c -» 0.
منابع مشابه
An ${cal O}(h^{8})$ optimal B-spline collocation for solving higher order boundary value problems
As we know the approximation solution of seventh order two points boundary value problems based on B-spline of degree eight has only ${cal O}(h^{2})$ accuracy and this approximation is non-optimal. In this work, we obtain an optimal spline collocation method for solving the general nonlinear seventh order two points boundary value problems. The ${cal O}(h^{8})$ convergence analysis, mainly base...
متن کاملA numerical approach to solve eighth order boundary value problems by Haar wavelet collocation method
In this paper a robust and accurate algorithm based on Haar wavelet collocation method (HWCM) is proposed for solving eighth order boundary value problems. We used the Haar direct method for calculating multiple integrals of Haar functions. To illustrate the efficiency and accuracy of the concerned method, few examples are considered which arise in the mathematical modeling of fluid dynamics an...
متن کاملAn Efficient Numerical Method for a Class of Boundary Value Problems, Based on Shifted Jacobi-Gauss Collocation Scheme
We present a numerical method for a class of boundary value problems on the unit interval which feature a type of exponential and product nonlinearities. Also, we consider singular case. We construct a kind of spectral collocation method based on shifted Jacobi polynomials to implement this method. A number of specific numerical examples demonstrate the accuracy and the efficiency of the propos...
متن کاملApproximate Solution of Boundary Value Problems on Infinite Intervals by Collocation Methods*
The numerical solution of boundary value problems for ordinary differential equations on infinite intervals is considered. The infinite interval is cut at a finite, large enough point and additional boundary conditions are posed there. For the solution of the resulting problem, /(-stable symmetric collocation methods are employed. Using the behavior of the solution of the "infinite" problem, me...
متن کاملSPLINE COLLOCATION METHOD FOR SOLVING BOUNDARY VALUE PROBLEMS
The spline collocation method is used to approximate solutions of boundary value problems. The convergence analysis is given and the method is shown to have second-order convergence. A numerical illustration is given to show the pertinent features of the technique.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010