Functional resting-state networks are differentially affected in schizophrenia.
نویسندگان
چکیده
Neurobiological theories posit that schizophrenia relates to disturbances in connectivity between brain regions. Resting-state functional magnetic resonance imaging is a powerful tool for examining functional connectivity and has revealed several canonical brain networks, including the default mode, dorsal attention, executive control, and salience networks. The purpose of this study was to examine changes in these networks in schizophrenia. 42 patients with schizophrenia and 61 healthy subjects completed a RS-fMRI scanning session. Seed-based region-of-interest correlation analysis was used to identify the default mode, dorsal attention, executive control, and salience networks. Compared to healthy subjects, individuals with schizophrenia demonstrated greater connectivity between the posterior cingulate cortex, a key hub of the default mode, and the left inferior gyrus, left middle frontal gyrus, and left middle temporal gyrus. Interestingly, these regions were more strongly connected to the executive control network in healthy control subjects. In contrast to the default mode, patients demonstrated less connectivity in the executive control and dorsal attention networks. No differences were observed in the salience network. The results indicate that resting-state networks are differentially affected in schizophrenia. The alterations are characterized by reduced segregation between the default mode and executive control networks in the prefrontal cortex and temporal lobe, and reduced connectivity in the dorsal attention and executive control networks. The changes suggest that the process of functional specialization is altered in schizophrenia. Further work is needed to determine if the alterations are related to disturbances in white matter connectivity, neurodevelopmental abnormalities, and genetic risk for schizophrenia.
منابع مشابه
Thalamocortical dysconnectivity in schizophrenia.
OBJECTIVE The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections. Previous studies have revealed thalamic abnormalities in schizophrenia; however, it is not known whether thalamocortical networks are differentially affected in the disorder. To explore this possibility, the authors examined functional connectivity in intrinsic low-frequency blood-oxy...
متن کاملThe Selective Impairment of Resting-State Functional Connectivity of the Lateral Subregion of the Frontal Pole in Schizophrenia
OBJECTIVE Although extensive resting-state functional connectivity (rsFC) changes have been reported in schizophrenia, rsFC changes of the frontal pole (FP) remain unclear. The FP contains several subregions with different connection patterns; however, it is unknown whether the FP subregions are differentially affected in schizophrenia. To explore this possibility, we compared rsFC differences ...
متن کاملResting-state theta-band connectivity and verbal memory in schizophrenia and in the high-risk state.
BACKGROUND Disturbed functional connectivity is assumed to underlie neurocognitive deficits in patients with schizophrenia. As neurocognitive deficits are already present in the high-risk state, identification of the neural networks involved in this core feature of schizophrenia is essential to our understanding of the disorder. Resting-state studies enable such investigations, while at the sam...
متن کاملDifferences in resting-state functional magnetic resonance imaging functional network connectivity between schizophrenia and psychotic bipolar probands and their unaffected first-degree relatives.
BACKGROUND Schizophrenia and bipolar disorder share overlapping symptoms and genetic etiology. Functional brain dysconnectivity is seen in both disorders. METHODS We compared 70 schizophrenia and 64 psychotic bipolar probands, their respective unaffected first-degree relatives (n = 70, and n = 52), and 118 healthy subjects, all group age-, gender-, and ethnicity-matched. We used functional ne...
متن کاملEnhanced disease characterization through multi network functional normalization in fMRI
Conventionally, structural topology is used for spatial normalization during the pre-processing of fMRI. The co-existence of multiple intrinsic networks which can be detected in the resting brain are well-studied. Also, these networks exhibit temporal and spatial modulation during cognitive task vs. rest which shows the existence of common spatial excitation patterns between these identified ne...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Schizophrenia research
دوره 130 1-3 شماره
صفحات -
تاریخ انتشار 2011